*UCSD p-System is & trademark of the Regents of the Copyright @ 1881, Texas Instruments Incorporated
University of California. _ See important warranty informiation at back of book.

This manual was developed by staff members of the Texas Instruments Education and
Communications Center.

This software is copyrighted 1979, 1981 by the Regents of the University of
California, SofTech Microsystems, Inc., Texas Instruments Incorporated, and other
copyright holders as identified in the program code. No license to copy this software
is conveyed with this product. Additional copies for use on additional machines are
available through Texas Instruments Incorporated. No copies of the software other
than those provided for in Title 17 of the United States Code are authorized by Texas
Instruments Incorporated.

LJCSD Pascal and UCSD p-System are trademarks of the Regents of the University of

California. Item involved met its quality assurance standards applicable to Version
Iv.0. '

TABLE OF CONTENTS.

GENERAL INFORMATION
1.1 Using this Manual.
1.2 Set-up Instructions . + « + « v« ..
1.3 Special Keys. v+ ¢« v v v v 0 v v v u

"UCSD PASCAL DIFFERENCES FROM

2.1 Strings

2.2 I/OINrinsics « o o o o o o o o o o o «

2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.2.7
2.2.8

2.3 Separate Compilation and Memory Management

2.3.1
2.3.2
2.3.3
2.3.4

- 2.4 Concurrent Processes .

End of File (EOF)
End of Line (EOLN)

.FileSoo.---.--...,.

READ and READLN
RESET v v v v v v vv v o
REWRITE. « v ¢« v o v 0 s
WRITE and WRITELN . . .

-

LI T N)

pAGEl.‘..I.II.l..'II...I

Memary Allgcation
SEGMENT Routines
UNITS ..
EXTERNAL Routines ...

. s s 8 8 & &

2,5 Texas Instruments Supplied Units .
2.6 Miscellaneous Differences

2.6.1
2.6.2
2.6.3
2.6.4
2.6.5
2.6.6
2.6.7
2.6.8
2.6,9
2.6.10
2.6.11

CASE Statements
Comments

4 4 ® 3 8 =5 & 8

- Extended Comparisons-. . .

GOTO and EXIT Statements
Long Integers

* ® & & v 4 3

Packed Variables . . «
Parametric PROCEDURES and FUNCTIONS .

Program Headings-
Sets . L L] L] * » - L] L] . & L]

SiZE Limitations s a2 a » ..

PROCEDURES AND FUNCTIONS
3-1 ATTACH- L R I L I T T T RS
302 BLOCKREAD LI 2L I I D D R T T

PASCAL COMPILER

»

" Transcendental Functions . .

"~ - Page 3

*

-

.

41

i0
12
15

17

18
21
21
21
22
27
28
29
29
30
31
31
31
32
32
33
34
35
35
35
36
36
39

44
45
45
46
46

47
48
49

TABLE OF CONTENTS

3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
- 3.25
3.26
3.27
3.28
3.29
3.30
3.31
3.32
3.33
3.34
3.35
3.36
3.37
3.38
3.39
3.40
3.41
3.42
3.45

BLOCKWRITE. .

CHAIN

CLOSE

CONCAT ..
CorPY
DELETE . . .
EXCEPTION.

FILLCHAR ..

GOTOXY ..
HALT
INSERT

IORESULT . . .

LENGTH . . .
MARK
MEMAVAIL .
MEMLOCK .
MEMSWAP

MOVELEFT

MOVERIGHT
POS
PWROFTEN
REDIRECT .
RELEASE . .
SCAN ...
SEEK. s+ ¢« o &
SEMINIT . .
SIGNAL
SIZEOF ...
START ...

" & = o @»

STR.OO.I.I

TIME
UNITBUSY .
UNITCLEAR
UNITREAD .
UNITSTATUS
UNITWAIT

UNITWRITE .
VARAVAIL
VARDISPOSE
VARNEW . .

. & »

WAIT .. .

« & 3 s & s = = 3
* & 8 & & 2 " 2 =
s = & ® & o 2 8 2 @
-------- .
e+ & s & s 2 s =
L R R I

LI R R I] - s
------ « = 8 @
" & = e & =& 9 = ° 8 =
------ . .
L 2T T IR Y I I S s = =
------ *« e s

s ® 4 8 s & ¥ s a2 e @
nnnnnnn . = 0w
[N I I « & s &
LI R N T R R I)
LI R I I B I I

LI T T O D I R B I]
LI B I } " s s & = s
. = ¢ & & & & s
s 8 8 B e » .

PASCAL COMPILER
Page 4

L] - [] L] . L] s 4 & 5 = @ 5 2 ¥ * » L] » L] L] * Ll L] L] »
IIIIII - L] L] » - - - - - - - [] - L] . a - - - - - - -
Ll - » L L] + & & &+ s = - L] » - & ®m ® & 9 5 8 ° 5 = 8 0 =
llllllll L] L] L] L] - - L] - - - L] - - . L] L] » - » L]
IIIII - [] » - L] - - - L] - L] . » - L] L] L] L] L] - - - L]
--------- 4 & & 8 s a8 8 s s 8 8 &+ e B N o
¢ & & 8 & & & = = L] -* . " & ¢ 5 & ° s ° 3 3 L] . L] L] » L]
» L] L) L] - L] - - . - . - » - L] ® & * & 2 = 2 = @
------- « . 4 & & s 2 a4 5 & ® & 8 3 2 . ® T e oS @
- L] L] - {] » * & & * = & = L] - . L] L * * - - . L] - L)
L] - L] . » - L] » * “« . # &4 & 4 & & & & = = = & & = . - L] [] -
- L] . . L]] - - l. - L] - L] - L] L] L] * & & L) L] - L) L
- . {] s 4 = 2 = * = - L] » » L] L] L] - L] L] L * » » L] L] »
 F & % & 8 8 s v = " s e 8 & 4 s & B a4 s+ s u " s 8 = @
L] - . L I) . [] - - - - *« ® ® 5 v @ LN] * L] L] » L * »
- L] L] . e L] L) - L] a ® = 8 & * 2 2 & B 2 2 3 3 = » L] L] -
L] L] L] » * » L] - L] $ & s & = = 2 = @ L - - . -] L) . »
IIIIIIIIIIIIIII L] L] L] L] L] - L] » * L] L L] Ll L] * L]
IIIIIIIIIIIII L] L] * L] » L] » * ® & @ L] L -
IIIIIIIIIIIII L] * L] L] L] L] L4 L] L] Ll L
------------ s 8 s 4.8 & & s 4 s » 4 & 5 & 8 & 8 & &
L] L] * L . L] * 4 4 & & & & & & . .3 3 s 8 B L] - -]

SEGMENTS AND LINKING
Main Memory Management

4.1
4.2
4.3
- 4.4
4.5
4.6
4.7

CONCURRENT PROCESSES

5.1
5.2

5.3

TEXAS INSTRUMENTS UNITS

6.1

6!2

6.3

6.4

Separate Compilation. . . .
Programming Tactics . . .
SEGMENTS L] - L - . - » L) L]

UNITS

The Linker. + « o v ¢ o v
The Utility Library

PROCESSES . + v v o . .
Semaphores « .« «

5.2.1
5.2.2

Mutual Exclrusion .
Synchronization .

Other Features v + v « »« .

Support Procedures and Functions
CHR DEFAULT

6.1.1
6.1.2.
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7

SET_PATTERN . .

GET PATTERN. .
SET_CHR_COLOR
SET SCREEN. . .

SET_SCR_COLOR .

JOYICCOIII‘

Random Numbers

6.2.1
6.2.2
6.2.3
6.2.4
Strings
6.3.1
6.3.2
6.3.3

SETRND

RANDOMIZE. . ..

RND_INT
RND_REAL

@ 4+ & =+ v 8 s & » »

BREAK

SPAN L] L L] - - . - -

UPPER_CASE . .

Sound Processing

6.4.1
6.4.2
6.4.5
6.4.4
6.4.5

MAKE_SND _LIST
DEL_SND LIST. .

SND_NOTE

SND_TONE
WHITE_NOISE . .

- PASCAL COMPILER
Page 5

»

. w

~TABLE OF CONTENTS

-l.-oi-'n-oo-o 96

s s+ & v 2 e & s & » 98

-.;..'-......100
"l‘l...'-‘l.lllJ.O?

- .‘ L] - ... L - L] L] -]-DB

P 11
P B 11
T) 4
et b e e e e e e 113

-....-.:.-....-.lla
-.-..-.'-....115

l.I‘I;llllﬂll6
.---.....noll?

‘nuo-.o-uoooll?

.'I - - - L * L] L - . 117

__‘-"'----.:.....121

“ 8w --o.-'.- LI I T 122

.. .‘. . - L] 7. ‘. L) - . . 123

LA 2L B D R R Y T) 124
. -. # ¢ 8 = " e s s @ 124
LI L I N N N A) 125

. L - [] L - l-l - - L] - 125

B
e e e e e e . 126
e e e e e e ee . 126
e e e e e e e 127
e e e e e e e .. 127
B
A 1
S 1)
P 5 3

“ e e s e e e ... 132

..---.....-132
e n e e e .. 133

n-.o----n.onl}}

. TABLE OF CONTENTS

7‘1.1

Compile-Time Option Descriptions «.v « « « s ¢ v 40 ¢ v o+ v &
7.2 Conditional Compilation :

PASCAL COMPILER
Page 6

686 PERIODICNOISE o ¢ v 4 0 ¢ ot 0 0t s o a oo s o oo aonas 134

. 647 SNDVOLUME &+ v v et v v 0o v s e ‘e e e s a e 134
64,8 CALLSND v ev v o0 v s 0 a0 s s o 00 au o e e s e .. 135

C 649 GOSUBSND o6 v v v v v v v n o v R Yo e s 136
6.4.10 RETURNSND & v v 6t et e o v s o s o v oo as e e e w o 137
6.4.11 JUMP.SND e e e s e e e e e e e e e e e 137
6.8.12 CHAINSND . o v v v v vim et v v o v s oo s s oo L37
6.4.13 CHNSND CHAIN . . . ¢ v oo o et e s e s e e e s 138

. 6.4.14 READ. SND.CHAIN v vt v s v o s 0 s s s v o v s o s 0w s 138
6.4.15 WRITE_SND LIST e b e e e e e e e e . 139
6.4.16 READ SND LIST o v v o0 0 a0 v s o viie vdla v o v s a v v oo 139
6.4.17 ENDSND. .. c.o v e v v 0 s s D SO 11
6.4.0B SET SND « v v o v v e v v e o v v v o s a s e e e e e e 140

S 6409 PLAY SND ¢ v v s e v ot s s s aie s s s 0 a0 n s e . 140
68,20 PLAY ALL SND v ¢ v von 0 ec0 000 0 s s's e s s oo on s 141
6.8,21 KILL SND v e.v v 0 s oo aiv o s 0o o s a0 vo 0 s oo 141
6.4.22 KILL_ALLSND c e e s e e e e 141
6.4.23 SET SND.TEMPO . ¢ o v o v e v s ae s6is o0 s a oo s o 141
6.8.28 SET.SNDFLAG .« «.v efsiin o o o v s is b o s 60 v o s s s oo 142
6.4.25 READSNDFLAG &+ ¢ coin o o o' it s s o iio s s o s 142
6.4.26 SND BEAT + v v v v o 0 a n s n ol s e ae 0 s v s e e e e 143

: 6.4.27 SND LST OFFSET v o0 o v 0 s v 0 s 0 0 e"d" 0 0 0 0 0 o e oee e 143
6.5 Sprite Handling T T T DI, D 1.
653 SET SPRITE v o v v o o s v0 0 a0 an s ois s o s 0 s s oo . 146
S 6,52, SETSPRATTRIBUTE « ¢« o v s i eoie a0 aa n v sne s o u s 148
6.53 DELSPRITE ¢ v v vo0o v v o0 v s 00 a0 e e e e e e e . 149

C 654 SET SPR_SIZE .« v ¢ ¢ 0 v 4 s eie m e e TSI e e eie e s 149
655 SPRITECOINC .« v ¢ v v oo venn oo nnaososonesos 152
6,56 PAST SPRITE COINC + ¢ v v 0 s s'n s ¢ e 0 0 00 aanaanrs 153
6.57 GET SPRITE S T T 153

6.6 Speech Handling. « « ¢« ¢ ¢ o 4 s.v ¢ 0 s o s s s eis sin o o o o 0o .. 154
6.6.1. GET SPEECH. « » « « o v o « « e e e e e 154
662, SAY ¢« v v v . Gt e ee s s e e se e s n e e e e s 154
CUSING THE COMPILER o v v v v v0 0 v svit s 0 s s a0 s s sw s asoces s 156
7.1 Compile-time Options «.s + o ¢ 2.0 o0 s + & e e wee e e e e e 158

159

. 164

TABLE OF CONTENTS

APPENDICE S & & .t i it it it i et e ot e et et e eee ey 166
8.1 ExecutionErrors...........................,...167
B2 I/ORESUILS « v v v v v o v s s v et s oo s nnsonnensneee.. 168
8.3 Device NUMbDEIS. ¢ o v v i i e ittt e it e e e et e o ne e ee . 169
B.4 Pascal SYntaX EITOPS o o o o vt o o o o ¢ v o o 0 o n s o s osounesasllO
8.5 Summary of Differences between UCSD Pascal and Standard Pascal . . 175

8.5.1 String Handling. v v vt v v v v b e e e e e e e e e e ... 175
8.5.2 I/O INEEINSICS . + v o ¢ ¢ v o o v v e v e o b oo oo nsnenes. 175
8.5.3 Memory Management « v v v v v it i i e e e e e e e e 177
8.5.4 CONCUITENCY « v &t ottt ot bt o et s s s o e neesss. 178
835 MisCellaneous .+ v v v v v v vt et e et e ee et e 179
8.5.6 Writing a Transportable Program « + v o o « o o v o o v s o v .. 181
8.6 Summary of Differences between System Versions . « v « v v . 4. ... 182
8.6.1 Version IVa0 & o 0 0t i i i it e i i e e e e e e, 183
8.7 Converting Programs for use under IV.0 « v v v o v o v o v ... s e o« 186
8.7.1 Converting Pascal PTOGrams « « « v v o v s v o v o o v v v o .. 186
8.7.2 Converting Assembly Language Programs . . « « v v v v v . . . 194
8.8 Reserved WOords « « v v v v v v i i h bt e et oo s na e neonennn. 19
8.8,1 Standard Pascal Reserved Words e e s s s s e s e aess 196
8.8.2 UCSD Pascal Reserved WOrds. « « « v o o v o o v o o s o o v u. 196
8.8.3 Standard Predeclared Identifiers « « « « o o o o o 2% v o 196
8.8.4 UCSD Predeclared Identifiers. « « v v . o v v v v i v ... 197
8.9 AssemblerSyntaxErrnrs..........................198
8.10 American Standard Code for Information Interchange (ASCII) 201
8.11 Musical Tone Frequencies + v v v v v v v v v o v v o v o o o n o e e e 202
8.12ColorCodes.................................203
8.13 High-resolution Color Combinations « + « « o « v o o & .« . e v s e e e . 204
8.14MathematicalFunctions..........................206
8.15 List of SPeech Words « « v o v v e v v v v v v et v s e e e e esnnns. 207
8.16 Program Development with Multi-Drive Systems. o v o v v v v 0. 0w . 211
8.16.1 Two-Drive System .« & o o v v vt it it ettt s e e e 21
8.16.2 Three-Drive System « o v v v v v v v v v v ot v o e e e e e 211

INCASEC}'DIFFICULTY..............................212

WARRANTYo--oo--.-...--...---.o.-.-.o.-...o.---213

PASCAL COMPILER
Page 7

PASCAL COMPILER
"~ Page 8

SECTION 1: GENERAL INFORMATION

UCsD Pascal* is a powerful, high-level, structured language designed for education,
business, scientific, mathematic, and entertainment uses. With the TI Home
Computer enhancements to release IV.0, you can use sound, graphics, color, speech,
sprites (moving graphics), and wired remote controllers, as well as the standard
features of UCSD Pascal. ;

With the Pascal Compiler, you can compile grograms you have written and entered
into the p-System using the UCSD p-System Editor (available separately), and then
run the compiled program' using the UCSD p-System. :

The Pascal Compiler is designed to be used with the Pascal Editor and Filer and at
least two disk drives, although it can provide limited use with one disk drive. - The
Pascal Compiler package contains a diskette labeled Compiler and this manual. The
diskette contains the files SYSTEM.COMPILER, which is the Compiler's p-code,
SYSTEM.LIBRARY, which contains the Texas Instruments Units described in Section
6, and SCREENQOPS.CODE and COMMANDIQ.CODE, which are used by various
intrinsics described in Section 3.

The simplest hardware configuration for developing Pascal programs requires the TI
Home Computer, the TI Color Monitor (or a video modulator and a television set),
the Memory Expansion unit, the p-Code peripheral, and a Disk Memory System with

at least one Disk Memary Drive. To enhance your system, you can add Disk Memory

Drives, the RS232 Interface, and other peripherals available from Texas Instruments.

The p-System Editor/Filer (described in the UCSD p-System Editor/Filer owner's
manual) allows you to create, edit, print, and save files. After a program file has
been created and saved on a disketts, you can compile it with the Compiler, and then
load -and run it as described in the UCSD p-System p-Code manual.

*
trademark of the Regents of the University of California.

'PASCAL COMPILER
‘Page 9

GENERAL INFORMATION

1.1 USING THIS MANUAL

The Pascal language was introduced around 1970 by its creators, Kathieen Jensen and
Niklaus Wirth, both of the Institut fur Informatik, ETH Zurich. Their definitive
description of the language is contained in the book Pascal User Manual and Report,
2nd Edition, which is available from Springer-Verlag publishers in New York. This
manual assumes that you are familiar with Standard Pascal as described in that boak.
A good introduction to UCSD Pascal is The UCSD Pascal Handbook, available from
Prentice-Hall publishers, Inglewood Cliffs, New Jersey.

This manual describes the differences between Standard Pascal and Release IV.D of
UCSD Pascal, as well as the enhancements which allow access to special Texas
Instruments Home Computer abilities. Only the sections of interest to you need to
be read in detail. However, you should read all of Section 2 and use that information
to refer to Secticns 3 and 6.

Section 2, UCSD Pascal Differences from Standard Pascal, describes the extensions to
Standard Pascal (as described in the book by Jensen and Wirth) and mentions the few
areas in which Standard Pascal has not been supported.

Section 3, Procedures and Functions, includes descriptions of the new procedures and
functions that have been added to Standard Pascal in the UCSD version. '

Section 4, Segments and Linking, gives details on how to use program segments,
including how to link together segments which you have created, enabling the
construction of larger programs than can be contained in memory at one time.

Section 5, Concurrent Processes, shows how to keep two sections of code active at
one time and how these two sections can interact.

Section 6, Texas Instruments Units, describes the units that support certain features
of the Texas Instruments Home Computer. These units allow easy use of character
definition, screen control, sound, graphics, color, speech, sprites (moving graphics),
and wired remote controllers.

Section 7, Using the Compiler, includes descriptions of the compile-time options and
conditional compilation.

PASCAL COMPILER
Page 10

‘GENERAL INFORMATION

Section 8, Appendices, provides quick reference to technical information. - The -
Appendices include error codes, a summary of the differences between Standard
Pascal and UCSD. ‘Pascal, and other useful mformation

Also of use, and referred to in this manual, is the Internal Archltecture Guide,
avallable from : : ; - . .

SofTech Microsystems, Inc.
2494 Black Mountain Road -
San Diego, California 72126

PASCAL COMPILER
‘Page 11

GENERAL INFORMATION

1.2 SET-UP INSTRUCTIONS

The steps involved in creating a program file and accessing the Compiler are included
in this section. Please read this material completely before proceeding.

Use your Disk Manager or the Pascal Filer to make a backup copy of the diskette
which contains the Pascal Compiler. Use this copy anly for your own use. The
original should be kept in a safe place.

Note: For the recommended placement of files on a multi-disk system, see the
Appendix.

1. Be sure that the Memory Expansion unit, the p-Code peripheral, and the
Disk Memory System are attached to the computer and turned on. Refer to
the appropriate owner's manuals for product details.

2. To create a Pascal program, use the p-System Editor. Insert the Editor
diskette into a disk drive.

3. Turn on the monitor and computer conscle. The p-System promptline
appears. Note: If you turn on the computer before inserting a diskette in
a disk drive, you must insert a diskette and then press I to initialize the
System before you can proceed.

4. Press E, for E(dit, to load the Editor.

5. Refer to the the UCSD p-System Editor owner's manual for detailed
directions on entering a program. When you have completed your program,
press @ for Q(uit. Then press W for W(rite.

6. Remove the Editor diskette and insert the diskette on which you wish to
save the program. If you have one disk drive, the program must be saved
on the diskette that contains the Compiler. If the program is too long to
fit on this diskette, then two disk drives are required.

7. Enter the filename for the program and press <return>.
8. Place the diskette that contains the Compiler and the program to be

compiled in a disk drive. If you have two or three disk drives, place the
diskette that contains the file to be compiled in one of the drives.

"PASCAL COMPILER
-Page 12

10.

GENERAL INFORMATION -

Press C, for Clompile, to load the Compiler.
The screen displays the message
Compiling...
while the Compiler is loaded. If the workfile, SYSTEM.WRK.TEXT, exists,
that file is compiled, and the p-code produced is saved as
SYSTEM.WRK.CODE and you may proceed to step 11.
If SYSTEM.WRK.TEXT does not exist, the following prompt appears.
Compile?
Enter the location and name of the file which you .wish to have compiled.
For example, to compile the program TEST.TEXT, which is contained on the
diskette in disk drive 2 (#5), enter
#5: TEST
Next the prompt -
To what codefile?
appears. Enter the location and name of the file to which you wish the
p-code to be saved. For example, if you wish the p-code to be saved as
TEST.CODE on the diskette in disk drive 2 (#5), enter

#5:TEST

If you wish the p-code to be saved as SYSTEM.WRK.CODE on the dlskette
in disk drive 1 (#4), just press <return>.

PASCAL COMPILER .
Page 13"

GENERAL INFORMATION

11. While the file is being compiled, an- account of the progress and any error
messages-are displayed. The following is the display when a small program
named TEST is compiled.

Pascal Compiler - Release 99/4 IV.0 Cla-4

<0 Pevens

TEST

<5 Deuun

9 lines compiled
TEST .

A description of the meaning of this display is given in Section 7.

12. When the compiling process is finished, the p-System promptline reappears.
You may then compile another program, run the program you compiled, or
insert a different diskette and perform some other task.

If you have only one disk drive, the size of the program which you may compile is
limited to the memory available on the diskette which contains the Compiler. If you
have two disk drives, then the program and p-code may occupy the memory on the
second diskette. With three drives, the Compiler can be on one diskette, 'a large
program on a second diskette, and the p-code on a third diskette.

PASCAL COMPILER
Page 14 -

GENERAL INFORMATION

1.3 SPECIAL KEYS

In this manual, the keys that you press are indicated by surrounding them with <angle
brackets>. The name <return> is used when the Pascal prompts on the screen refer
to <return> or <cr> (carriage return). You should press the <ENTER> key. Pressing
any key for more than approximately half a second causes that key to be repeated.

To obtain lower-case letters, press the key with the letter on it. To obtain ail
upper-case letters on the TI-99/4, use the alpha lock toggle to change to upper-case.
On the TI-99/4A you may use the alpha lock toggle or press the <ALPHA LOCK> key.
To cbtain a single upper-case letter on the TI-99/4 when the computer is in
lower-case mode, simultaneously press the small space key on the left side of the
'keyboard or the space bar and the key. On the TI-99/4A, press the key and <SHIFT>.

Name TI-99/4 TI-99/4A Action .
 SHIFT F FCTN 1 Deletes a character.
{ins> SHIFT G FCTN 2 Inserts a character.
<{flush> SPACE 3 FCTN 3 Stops writing output to the screen.
<break> SPACE 4 FCTN 4 Stops the program and initializes the
System.
{stop> SPACE 5 FCTN 5 Suspends the program until this key is
: pressed again.
<alpha lock> SPACE 6 FCTN 6 or Acts as a toggle to convert uppper-case
ALPHA LOCK letters to lower-case and back again.
<screen left> SPACE 7 FCTN 7 Moves the text displayed on the screen
to the left 20 columns at a time.
<screen right> SPACE 8 FCTN B Moves the text displayed on the screen
to the right 20 columns at a time.
<line del> SHIFT Z FCTN 92 Deletes the current line of information.
{ SPACE 1 FCTNF Types the left brace.
} SPACE 2 FCTN G Types the right brace.
{ SPACE 9 FCTNR Types the left bracket.
] SPACEO FCTINT Types the right bracket.
<etx/eof> SHIFTC CTRLC Indicates the end of a file.
<{esc> SPACE. CTRL. Tells the program to ignore previous
text, ‘
<tab> SHIFT A CTRL 1 Moves the cursor to the next tab.
{up-arrow> - SHIFT E FCTN E Moves the cursor up one line.
<left arrow> or SHIFT S FCTN S Moves the cursor to the left one
<backspace> . character.

PASCAL COMPILER
Page 15

~GENERAL INFORMATION

Name TI1-99/4 TI-99/4A Action : S

<right-arrow> SHIFT D FCTND Moves the cursor to the right one
: ' e character. ;

{down-arrow> SHIFT X FCTN X Moves the cursor down one line.

<{return> ENTER ENTER .. -Tells the computer to accept the
: RS : - information.you type..

PASCAL COMPILER
Page ‘16

SECTION 2: UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

This section summarizes the areas in which UCSD Pascal differs from Standard Pascal
and explains in detail those topics (such as packing) which are exclusive to UCSD
Pascal. For a full description of the Pascal language, refer to other appropriate
references such as The UCSD Pascal Handbook (Inglewood Cliffs, N.J.: Prentice-Hall).
Standard Pascal is defined by the Pasecal User Manual and Report {2nd Edition), by
Kathieen Jensen and Niklaus Wirth (New York: Springer-Verlag, 1975).

This version of UCSD Pascal differs from other implementations in six general areas.

e 5String Handling: The type STRING has been added to the language, along with
a number of intrinsic functions for manipulating strings.

® [/O Intrinsics: A number of intrinsics have been added to facilitate handling
of files and-peripheral devices. The Standard Pascal 1/0 (input/output)
intrinsics have been slightly modified to make them more appropriate to an
interactive environment.

e Separate Compilation and Memory Management: The language has been ,
extended by the addition of SEGMENT routines, which facilitate swapping of
..program code at execution time, and UNITs, which allow separate compilation

of Pascal routines and data structures.

e Concurrency: Some syntax extensions have been made, and a few intrinsics
added, to suppaort concurrent processes.

s Texas Instruments UNITs: Special UNITs containing procedures and functions
enable easy use of character definition, screen control, sound, graphies, color,
speech, sprites (moving graphics), and wired remote controllers.

® Miscellaneous: There are a number of small deviations from and extensions to
Pascal syntax, as well as limitations imposed by the microprocessor
environment.,

PASCAL COMPILER
Page 17 -

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.1 STRINGS

This version of Pascal provides a predeclared type STRING. A variable or constant
‘of type STRING is a sequence of characters. In a STRING variable, the length of
the sequence can vary durmg the execution of a program. :

A STRING variable has a maximum length, called the static length, of 255
characters. The default maximum length of a' STRING variable is 80 characters, but
this default can be overridden by following STRING with the desired maximum length
enclosed in square brackets ({). The empty string, with a LENGTH of zero,
represented by two single quotes ("), is allowed. '

The following examples show STRING declarations.

TITLE: STRING; { Defaults to a maximum length of 80

T characters. } :

NAVE STRING[ZU], { Defines the STRING with a maximum of 20
: characters. } :

Strings can be manipulated by either Standard Pascal syntax or the special
string-handling intrinsics in this Pascal. The intrinsic function LENGTH returns the
dynamic length of a string. Values can be assigned to STRINGs usmg assugnment
statements, STRING intrinsics, or READLN statements.

The following examples illustrate ‘the use of STRINGSs.

TITLE ;= THIS IS A TITLE '3
" READLN{COVER) ;
“NAMVE := coPY(LAST,l,ZU)r

The individual characters within a STRING are indexed as a PACKED ARRAY OF
CHAR is indexed, from one to the LENGTH of the STRING.

The following examples show two uses of STRING indexing, assuming the variables do
not equal the null string.

LETTERS[1] := 'A';
TITLELLENGTH(TITLE)] := 'M';

- PASCAL.-COMPILER
Page 18

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

A variable of type STRING may not be indexed beyond its current dynamic LENGTH
when range-checking is turned on. Beware especially of strings of length zero. The
following sequence results in a "VALUE RANGE ERROR" runtime error.

TITLE := '12347;
TITLE[5] := '5';

STRING variables are compatible for assignment and comparison with any other string
constant or variable regardless of their static or dynamic length. String constants (but
not variables) can be compared with a PACKED ARRAY OF CHAR. String
comparisons return a result based on alphabetical ordering. See Section 8.10,

The following program illustrates the comparison of STRING variables.

PROGRAM COMPARESTRINGS ;
VAR S: STRING;
T: STRING[40];
BEGIN S := '"SOVETHING';
T := 'SOMETHING BIGGER'
IF S =T '
THEN WRITELN('Strings do not work very well!')
ELSE
IFS>T | |
THEN WRITELN(S,' is greater than ',T)
ELSE
IF §<T
_ THEN WRITELN(S;' is-less than ',T);
IF S = '"SOVETHING! R
THEN WRITELN(S,' equals ',S);
IF § > 'SANETHII\G'
THEN WRITELN(S is greater than SAVETHING');
IF S 'SOVETHING ! '
THEN WRITELN('BLNV(S DON''T CDUNT') _
ELSE WRITELN('BLANKS APPEAR TO MAKE A DIFFERENCE"') 3
S o= "TXXX';
T := 'ABCDEF';
IF 5 >T
THEN WRITELN(S,' is greater than ',T)

ELSE WRITELN(S,' is less than or equal to ',T);
Em'

PASCAL COMPILER
- Page 19

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

This program produces the following output.

SOVETHING is less than SOVETHING BIGGER
SOMETHING equals SQVvETHING

SOMETHING is greater than SAVETHING
BLANKS APPEAR TO MAKE A DIFFERENCE

XXX is greater than ABCDEF

One of the most common uses of STRING variables in this Pascal is reading file
names from the CONSOLE: as in the following program segment.

PROGRAM LISTER;
VAR BUFFER: PACKED ARRAY[0..511] OF CHAR;
FILENAVE : STRING:
F: FILE;
BEGIN
WRITELN('Enter the filename of the file');
WRITE('to be listed --->');
READLN(F I LENAVE) ;
RESET(F,FILENAMVE) ;
WHILE NOT EOF(F) DO
BEGIN
.. | Code to use the file. }
END;
END.

The Pascal intrinsics READ and READLN read characters one at a time into a
STRING variable, up to but not including the end of line (<return>) Thus, only one
STRING can be read for each line of the input file.

For example, the single statement READLN(SI,SZ) is equivalent to the two-statement
sequence READ(S1); READLN(S2). In both cases the STRING variable $2 is assigned
the empty string. READ and READLN are described in Section 2.2.4.

The string-handling intrinsics are CONCAT, COPY, DELETE, INSERT, LENGTH, and
POS. Descriptions of these intrinsics are in Section 3.

'PASCAL COMPILER
Page 20

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.2 1/O INTRINSICS

UCSD Pascal is designed for interactive use. Therefore some of the Standard 1/0
intrinsics have been altered and others added. In addition to the changes from
Standard Pascal described in this section, refer to the I/O intrinsics which have been
added to UCSD Pascal. These are BLOCKREAD, BLOCKWRITE, CLOSE, IORESULT,
UNITCLEAR, UNITREAD, UNITSTATUS, and UNITWRITE, all described in Section 3.

2.2.1 End of File (EOF)

To set EOF TRUE for a text file being entered from the CONSQOLE:, press <etx>.
Also refer to the section on SETUP in the UCSD p-Systemn Utilities owner's manual.

If a file F is closed, EOF(F) returns the value TRUE. For a TEXT file, EOF(F) being
TRUE implies that EOLN(F) is also TRUE. After a RESET(F), EOF(F) is FALSE. If
EOF(F) becomes TRUE during a GET(F) or a READ(F,...), the data obtained is not
valid,

When your program starts executing, the System performs a RESET on the
predeclared files INPUT, QUTPUT, and KEYBOARD. The predeclared file
KEYBOARD is described in Section 2.2.3.1.

ECGF and EOLN refer to the file INPUT unless the name of another file is given as
their first parameter. -

2,2.2 End of Line (EOLN)

EOLN(F) is defined only if the contents of F are of type CHAR. EOLN(F) becomes
TRUE only after reading a <return> from file F. As with ECF, EOLN refers to the
Standard file INPUT if the first parameter is not the name of a file.

The following example shows the importance of typing a <return> at the proper time.
Entry data for this program consists of integers separated by spaces. To end entry
and set EOLN(F) tao TRUE, press <return> immediately after the last digit of the last
integer on a line. If a space precedes <return>, EOLN remains FALSE and another
READ takes place. o ' '

PASCAL COMPILER
Page 21

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

PROGRAM ADDLINES ;
VAR K,SUM: INTEGER;
BEGIN
WHILE NOT EOF (INPUT) DO
BEGIN o
SIM := 0y |
READ(INPUT,K} ; ,
WHILE NOT EOLN(INPUT) DO
BEGIN
SIM 1= SUM+K;
READ(INPUT ,K) ;
END
SLM 1= SUM+K;
WRITELN(OUTPUT) ; o
WRITELN(QUTPUT, 'THE SUM FOR THIS LINE IS ',SUM);
. ENDj
END.

Press <etx> to stop program execution.
2.2,3 Files

The file type INTERACTIVE and files without a type have been added to Standard
"Pascal. Files cannot be declared inside structured variables. ' :

2.2.3.1 INTERACTIVE Files

Like files of type TEXT, files of type INTERACTIVE are composed of characters,
INTERACTIVE files differ from TEXT files in their behavior when they are used by
the intrinsics READ, READLN; and RESET. * Files that have types other than
INTERACTIVE behave as in Standard Pascal.

The Standard predeclared files INPUT and OUTPUT are defined to be INTERACTIVE.
The file KEYBOARD, which is predeciared in this Pascal, is also INTERACTIVE.

INPUT defaults to CONSOLE:. The statement READ(INPUT,CH) where CH is a
character variable, echos the character typed from CONSOLE: back to CONSOLE:.

WRITE statements default to OUTPUT, causing the output to appear on CONSOLE:.

PASCAL COMPILER
. Page 22

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

KEYBOARD is the non-echoing equivalent of INPUT. For example, the following two
statements are equivalent to the single statement READ(INPUT,CH).

READ(KEYBOARD, CH) ;
WRITE (QUTPUT ,CH) ;

For an explanation of "redirecting" the Standard files- INPUT and OUTPUT, see the
UCSD. p-System P-Code Peripheral owner's manual.

Suppose that you have made the foliowing declarations.

VAR CH: CHAR; _
F: TEXT; { Type TEXT is a FILE OF CHAR. }

Then the statement READ(F,CH) is defined in Standard Pascal to be equivalent to the
following two-statement sequence. : :

CH := F*; { Standard }
CGET(F); { method. }

In other words, the Standard definition of READ requires that opening a file must
load the file window variable F with the first character of the file. In an interactive
programming environment it is not convenient to type the first character of an input
file at the time the file is opened, because then every program using files would wait
until a character was typed whether or not the program performed any input '
operations. '

The INTERACTIVE file type has been defined in UCSD Pascal to overcome this
problem. Declaring a file F to be of type INTERACTIVE is equivalent to declaring F
to be of type TEXT, except that READ(F,CH) on an INTERACTIVE file is the reverse
of the sequence specified by the Standard definition for files of type TEXT.

GET(F); { UCcsSD Pascal }
CH := F~; | methaod. }

This difference affects the way in which EOLN must be used when reading from a
text file of type INTERACTIVE. As described above, EOLN becomes TRUE only
after reading the end of line character (<return®). When {return> is read, EOLN is
TRUE, and the character returned as a result of the READ is a blank,

PASCAL COMPILER
Page 23

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

‘On a Standard file, RESET(F) performs an immediate GET(F). This does not happen if
the file is INTERACTIVE. Thus, on an INTERACTIVE file, the equivalent of a -
Standard RESET is the foliowing two-statement sequence.

RESET(F); { Makes INTERACTIVE }
GET(F); | look like TEXT. }

Refer to Section 2.2.4 on READ and READLN and Section 2.2.5 on RESET for more
details.

2.2.3.2 Files without a Type

This version of Pascal allows files to be declared without a type. An untyped file F
can be thought of as a file without a window variable F. With such a file, all 1/0O
must be performed with the functions BLOCKREAD and BLOCKWRITE, described in
Section 3. Any number of blocks can be transferred with either BLOCKREAD or
BLOCKWRITE. They return the number of blocks transferred.

The following program reads a diskette file called "SOURCE.DATA" and copies the
file into another diskette file called "DESTINATION" using untyped files and the
intrinsics BLOCKREAD and BLOCKWRITE, See the notes in Sections 3.2 and 3.3
- when using BLOCKREAD and BLOCKWRITE. B : R

PASCAL COMPILER
~ Page 24

P

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

PROGRAM F ILEDEMD;
VAR BLOCKNUMBER, BLOCKSTRANSFERRED: INTEGER;
BADIO: BOOLEAN:
G,F: FILE;
BUFFER: PACKED ARRAY[0..511] OF CHAR;
BEGIN
BADIO := FALSE:
RESET(G, ' SOURCE .DATA"') ;
REWRITE(F, '"DESTINATION');
BLOCKNUMBER := 0
{$1-} { This turns off 1/O checking. } .
BLOCKSTRANSFERRED := BLOOKREAD(G,BUFFER, 1 BLOCK[\UVBER)
WHILE ((IORESULT=0) AND (NOT BADIO) AND
(BLOCKSTRANSFERRED=1)) DO
BEGIN : _
BLOCKSTRANSFERRED := BLOCKWRITE (F,BUFFER, 1,BLOCKNUMBER) 3
BADIC := ((BLOCKSTRANSFERRED<1) OR (IORESULT<>0));
BLOCKNLMBER := BLOCKNUMBER+1 ;
BLOCKSTRANSFERRED := BLOCIKREAD(G,BUFFER, 1,BLOCKNUMBER) 3

. ENDj
§ BLOCKSTRANSFERRED := BL.CU<WRITE(F BUFFER, 1 BLOOKNUMBER) ; z_ﬁmg
CLOSE(F,LOCK) ; : . RS
END.

2.2.3.3 Random Access of Files

Files can be randomly accessed with the UCSD Pascal intrinsic SEEK. The
parameters for SEEK are the file identifier and an integer specifying the record ‘
number to which the window should be moved. The first record of a structured file
is record number zero. :

Attempts to PUT records beyond the physical end of file set EOF TRUE. (The
physical end of file is the pgint at which the next record in the file would overwrite
another file on the diskette.) SEEK always sets EOF and EQOLN to FALSE. A
subsequent GET or PUT sets these conditions as appropriate. SEEK is described in
Section 3. : :

The following sample program demonstrates the use of SEEK to access and update
records in a file randomly. '

'PASCAL COMPILER
Page 25

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

PROGRAM RANDOMACCESS ;
VAR RECNUMBER: INTEGER;
CH: OHAR;
DISK: FILE OF RECORD
NAME : STRING[201;
DAY ,MONTH, YEAR: INTEGER;
ADDRESS: PACKED ARRAY[0..49] OF CHAR;
END;
BEGIN '
RESET (DISK, '"RECORDS .DATA') ;
WHILE NOT EOF(INPUT) DO '
BEGIN
WRITE (QUTPUT, 'Enter record number --->'), ,
READLN(INPUT, RECI\UVBER) H . R
SEEK(DISK, REO\LNBER)
CET(DISK) ;
WITH DISK"DO
BEGIN
IF NOT "£0F (DI SK)
THEN WRITELN(OQUTPUT ,NAME ,DAY ,MONTH, YEAR ADDRESS }
ELSE WRITELN('New Record');
WRITE (QOUTPUT, 'Enter correct name --->');
READLN(INPUT ,NAME) 3
... { Code to use the information obtained. }
END; '
{ Must point the window back to the record since
GET(DISK) advances the window to the next record after .
- loading DISK. }. :
"SEEK (DI SK ,RECNUMBER) ;
PUT(DISK) ;
END;g
END -

2.2.3.4 Files as Flements of Records or Arrays.

This version of Pascal does not allow files to be declared inside structured variables
such as arrays or records. Consequently, file variables cannot be stored on the Heap.
This restriction is imposed so that the Compiler can easily produce hidden code -to
open and close an internal file at the proper limits of its scope..

PASCAL COMPILER
Page 26

P

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.2.4 READ and READLN

'Strings are read character-by-character untii terminated by your pressing <return>.
When integers are read, leading blanks and end-of-lines are ignored until a non-blank
character is read. An integer is terminated by a space (" "), a character that is not
a digit, or a <return>. Before a string has been completely read, it can be corrected
by backspacing over it and retyping. . ' '

Real values are read in the same way as integers. Neither Boolean values nar any
structured type can be read.

The Iehf:lvior of READ and READLN conforms to the definition in Standard Pascal
except when handling files that are INTERACTIVE. The Standard file INPUT is
defined to be INTERACTIVE in UCSD Pascal. The action of READ on an
INTERACTIVE file is described below.

In the following example, the left fragment is taken from Standard Pascal with only
the RESET and REWRITE statements altered. This program correctly copies the text
file X to text file Y. The program fragment on the right performs a similiar task,
except that the source file being copied is INTERACTIVE, thus forcing a slight

change in the program in order to produce the desired resuit.

PROGRAM STANDARD:; PROGRAM UCSD_VERS ION;

VAR X, Y:TEXT VAR X,Y:INTERACTIVE;
CH:CHAR CH:CHAR;

BEGIN , - BEGIN :
RESET (X, ' SOURCE.TEXT') H RESET (X, 'CONSOLE &7) H

REWRITE(Y, ' SOVETHING. TEXT"®)i REWRITE(Y, ' SOMETHING. TEXT!)3
READ(X,CH) ; Sk

WHILE NOT EOF(X) DO _ WHILE NOT EOF(X) DO
BEGIN - BEGIN . /|
WHILE NOT EOLN(X) DO WHILE NOT EOLN(X) DO
BEGIN BEGIN
READ(X,CH) ; WRITE(Y,CH) ;
WRITE(Y,CH); READ(X,CH) 3
END; END;
READLN(X} ; READLN(X) ;
 WRITELN(Y); WRITELN(Y) ;
END; . : END;
CLOSE(Y, LOCK) ; : _ CLOSE(Y,LOK) ;
END. END.

PASCAL COMPILER
Page 27 '

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

Note that text files X and Y in both programs had to be opened with the extended
form of the Standard procedures RESET and REWRITE.

The CLOSE intrinsic (a new intrinsic; see Section 3) was applied to file Y in both
versions of the program to make it a permanent file in the diskette directory called
"SOMETHING.TEXT". Text file X could have been a diskette file instead of coming
from CONSQOLE: in the right-hand version of the program.

2.2.5 RESET

The Standard procedure RESET(F) resets the file window to the beginning of file F.
The next GET(F) or PUT(F) affects record number zero of that file. An immediate
GET(F) is also performed within RESET (thus getting the first record of the file),
unless file F is INTERACTIVE. : :

Thus, for INTERACTIVE files, the equivalent of the Standard definition of RESET(F)
is the following two-statement sequence.

RESET(F); { Makes an INTERACTIVE file }
GET(F); [look like a TEXT file. }

Except for this stipulation about INTERACTIVE files, the behavior of RESET is as in
Standard Pascal. : '

UCSD Pascal also allows RESET to have a second parameter, which is the name of an
existing diskette file or device, contained in a string constant or string variable. The
diskette file (or device) is referred to as an "external" file, while a file that is a data
objéct in a Pascal program is called an "internal" file.

The following statements associate the file pointer F with the external (diskette) text
file "ODD" or the diskette file named in the string variable FNAME.

RESET(F, 'ODD.TEXT')
RESET(F, FNAVE)

Trying to RESET a nonexistent external file or an internal file that is already open
causes an 1/O error. Trying to RESET a write-only device, such as PRINTER:,
causes an 1/0 error since the device is not an input device, and the GET that RESET
implicitly performs attempts to read the device.

PASCAL COMPILER
Page 28

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

External files that are opened by a program with RESET or REWRITE can be closed
with the intrinsic CLOSE (see Section 3).

2.2.6 REWRITE
The intrinsic REWRITE "clears'; a file by setting F to the empty file and EQF(F) to .
TRUE. A call to REWRITE can also be used to open a new file.

In this Pascal, the REWRITE intrinsic can be called with a second parameter which is
the name of a diskette file (as in RESET) contained in a string constant or a string
variable. '

If the diskette file is named, it can be either an existing file or a new file. If it is
new, a file of the appropriate type is created on the diskette. If it:already exists,

REWRITE creates a temporary file which can replace the old file, be saved under a
new name, or be discarded. See the CLGSE intrinsic in Section 3.

If there is no second parameter, REWRITE(F) is equivalent to REWRITE(F,F").
Trying to REWRITE an already open internal file causes an I/0 error.

Aside from the provision for binding an internal file to an external file name,
REWRITE behaves as defined in Standard Pascal.

2,2.7 WRITE and WRITELN

In UCSD Pascal, WRITE and WRITELN can write values of type INTEGER, REAL,
STRING, and PACKED ARRAY OF CHAR. BOOLEANS, other types of arrays, and
other structured types cannot be output.

WRITE and WRITELN can write an entire PACKED ARRAY OF CHAR in a single
WRITE statement, as illustrated by the following statements.

VAR BUFFER: PACKED ARRAY[0..10] OF CHAR;

BEGIN
BUFFER := 'HELLO THERE'; {Contains exactly 11 characters.}
WRITELN(QUTPUT, BUFFER);

END. |

.PASCAL COMPILER
Page 29

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

Field width specifications also apply to STRINGs. When a string variable or constant
is written without specifying a field width, the actual number of characters written is
equal to the dynamic length of the string. If the field width specified is longer than
the dynamic length of the string, leading blanks are inserted and written. If the
field width is smaller than the dynamic length of the string, the excess characters are
truncated on the right. These characteristics are 1llustrated below.

PROGRAM WRITESTRINGS;
VAR S5:STRING; |
BEGIN N :
S := 'THE BIG BROWN FOX JUWPED...'
WRITELN(S) ;
WRITELN(S:30);
T WRITELN(S:10);
"END. ST

This program produces the followmg output.

THE BIG BROWN FOX JUMPED...
THE BIG. BROWMN FOX JUMPED. .. -
THE BIG BR

2.2.8 PAGE

In UCSD Pascal, the intrinsic PAGE sends a formfeed character to a file or device

specified in a parameter. For example, PAGE(F); sends a formfeed character to the
file specified by F. PAGE(OUTPUT), sends'a formfeed character to the screen and

clears the display. . :

PASCAL COMPILER
Page 30

UCsSD PASCAL-DIFFERENCES FROM STANDARD PASCAL

2.3 SEPARATE COMPILATION AND MEMORY MANAGEMENT

UCSD Pascal allows separate compliatlon and memory management, which are
discussed in detail in Section 4. This section shows only the syntax of particular
extensions,

2.3.1 Memory_Allocatinn

The Standard procedures DISPOSE and NEW are 1mplemented and the
MARK/RELEASE mechanism used in earlier versions of UCSD Pascal is still
supported. In addition, the following intrinsics are provided as aids to memory
management: MEMAVAIL, VARAVAIL, VARDISPOSE, and VARNEW. These are
described in Section 3. If you intend to make much use of direct control of memory
resources, you should refer to the Internal Archltecture Guide.

Note: If you use the NEW intrinsic to allocate space for a record with a partlcular
variant record, you must DISPOSE of that record using the same variant. Otherwise,
you risk damaging the Heap and crashing the System. Similarly, it is crucial that
MARKs and RELEASEs be properly paired. The contents of a MARKed pointer must
not be altered until the matching cali to RELEASE has been performed, and
RELEASEs must only be performed on variables that are MARKed but not yet
RELEASEG.

2.3.2 SEGMENT Routines

Routines (procedures, functions, or processes) normally occupy the same code segment
as the compilation unit in which they appear, but a segment routine occupies a code
segment of its own. Code is swapped into memory one segment at a time; the
space a segment occupies in memory becomes available to other praograms as soon as
it is no longer in use. Thus, declaring routines such as a program's initialization and
termination routines as segment routines may improve a program's memory use.

To define a segment routine, begin its declaration with the reserved word SEGMENT,
as shown below.

SEGMENT PROCEDURE ONE;
BEGIN
PRINT (' SEQVENT NUMBER ONE ') ;
END;

PASCAL COMPILER
Page 31

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

More information about segment routines, ihclUdihg some restrictions on the waj' in
‘which they must be declared, appears in Section 4.

2.3.3 UNITs

UNITs are used to compile Pascal routines and data structures separately from the
main program. This is helpful in preparing long programs that compile slowly, in '
coordinating the efforts of several programmers using common facilities, or for
producing a set of standard routines that pei‘form"commonly required functions.

2.3.4 EXTERNAL Routines

A Pascal host can use an assembly language routine that is assembled separately.
The host must include a Pascal routine heading (with parameters, if there are any)
and designate it as EXTERNAL, as shown below.

'FUNCTION FAST (SPEED: INTEGER): BOOLEAN; EXTERNAL;
PROCEDURE WRITE_QUT; EXTERNAL;

Assembled routines used by a Pascal haost must strictly adhere to Pascal calling
conventions and System constraints on resources such as memory and registers. (See
the UCSD p-System Pascal Assembler and Linker owner's manuals for more details.)
Before you run a host which uses external routines, the routines must be bound to the
host's code by using the Linker, as described in the Pascal Assembler and Linker
manuals.

PASCAL COMPILER
Page 32

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.4 CONCURRENT PROCESSES

In this Pascal, you can declare a PROCESS. A process declaration is similar to a
procedure declaration, as shown in the following example.

PROCESS BARN (VAR COW: REAL);

A process is a routine whose execution appears to proceed at the same time as the
main program. Processes are initiated by the intrinsic START (see Section 3).
START has some optional parameters which aliow you to specify the space allocation
and priority of a process. ‘

The predeclared type SEMAPHORE_allows coneurrent processes to communicate with:
each other. Semaphores are initialized by the intrinsic SEMINIT and managed by the
intrinsics SIGNAL and WAIT. ‘

These intrinsics are described in Section 3, and concurrent praocesses are discussed
more fully in Section 5.

PASCAL COMPILER
-~ Page 33

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL.

2.5 TEXAS INSTRUMENTS SUPPLIED UNITS

The TI Home Computer has many capabilities that are not easily available with
Pascal statements. These include definition of characters, sound, sprites, and speech.
These capabilities are available as functions and procedures in specially written
UNITs contained in SYSTEML.LIBRARY.

These UNITs are SUPPORT, RANDOM, MISC, SOUND, BEEP, SPRITE, and SPEECH.
To access the functions and procedures within the UNITs, include a statement in your
program which consists of USES followed by the name of the UNIT used by the
program. :

SUPPORT allows you to set character colors and screen colors, define patterns,
obtain character patterns, turn the screen off, and set the display mode (patterp,
multi-color, or text).

RANDOM provides for generation of pseudo-random numbers.

MISC lets you determine the values in strings, and change strings to all upper-case
letters.

SOUND can be used to create a broad spectrum of notes and noises and coordinate
those sounds with your program. '

BEEP is a subset of the UNIT SOUND. It allows the use of basic sounds and takes
less memory than SOUND.

SPRITE permits you to create and delete sprites (moving graphics), adjust their size
and speed, and determine when they are coincident.

SPEE.CH allows you to use speech when the Solid State Speech ™ Synthesizer, sold
separately, is attached to the console.

For sprites and sounds, the procedures allow you to set up a complex sequence of
instructions that are performed concurrently with program execution.

The procedures and functions available in each of these UNITs are described in
Section &.

PASCAL COMPILER
:-Page 34

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.6 MISCELLANEOUS DIFFERENCES

Several miscellaneous additions to and alterations of Standard Pascal have been made.
They affect the use of CASE statements, comments, comparisons, the GOTO
statement, the use of INTEGERS, packed variables, parameters, program headings,
sets, and transcendental functions. '

2.6.1 CASE Statements

In UCSD Pascal, CASE statements "fall through" if there is no label equal to the case
selector. When this happens, the statement following the CASE statement is
executed next.

For example, the following program only outputs the line "THAT'S ALL FOLKS" since
the case statement "falls through" to the WRITELN statement following the case
statement, as shown below.

PROGRAM FALLTHROUGH;
VAR CH:CHAR;

BEGIN
CH := 'A';
"CASE.- CH OF

'B': WRITELN(QUTPUT, 'HI THERE');

'C':s WRITELN(QUTPUT, 'THE CHARACTER IS A ''C''!')
END; '
WRITELN{OUTPUT, 'THAT''S ALL FOLKS');
END. -

2.6.2 Comments

The Compiler considers a comment to be any text appearing between either the
symbols "(*" and "¥)" or the symbaols M and "", Text appearing between these
symbols is ignored by the Compiler unless the first character is a dollar sign, in which
case the text is interpreted as a Compiler contro] comment, as described in Section
7.

If the beginning of the comment is marked with the "(*" symbol, the end of the
comment must be marked with the matching "*)" symbol, rather than the "}" symbol.
When the comment begins with the "{" symbol, the comment continuss until the

. PASCAL COMPILER
Page . 35

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

matching "j* symbol appears. This feature allows you to "comment out" a section of
a program which itself contains comments, as shown below.

{ XCP := XCP + 13 (* Adjust for special case. *¥) |

The Compiler does not keep track of nested comments. When a comment symbol is
encountered, the text is scanned for the matching comment symbol. Therefore, the
following text results in a syntax error.

{This is a comment { Nested comrment. } End of first comment. }

~

Error here.
2.6.3 " Extended Comparisons

UCSD Pascal allows equal (=) and not equal (<>) comparisons of any array or record
structure.

2.6.4 GOTO and EXIT Statements

A GOTO statement causes a "jump" in the flow of control of a program. The next
statement executed is the statement with the label named in the GOTO statement,
and execution proceeds from that point. In UCSD Pascal, the label and the GOTO
statement must be within the same routine or within the same main program block.
~ This is a more restricted form of the GOTO statement than in the Standard language.

EXIT is an extension which accepts as its single parameter the identifier of -a routine
to be exited, the identifier of a program, or the reserved word PROGRAM. EXIT
causes the routine or program it names to be stopped immediately. The addition of
the EXIT statement to Pascal was inspired by the oceasional need far a
straightforward means to stop a complicated and possibly deeply nested series of
procedure calls if an error occurs.

Using-an EXIT statement to leave a FUNCTION can result in the FUNCTION
returning undefined values if no assignment has been made to the FUNCTION
identifier before the execution of the EXIT statement.

PASCAL COMPILER
Page 36

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

An example of the EXIT statement is shown below.

PROGRAM EXITDEMO;
VAR T: STRING;

CN: INTEGER;
PROCEDURE Q; FORWARD;
PROCEDURE P

BEGIN

READLN(T) ;

WRITELN(T);

IF T{11="#"'

THEN EXIT(Q);

WRITELN('LEAVE P');

END;
PROCEDURE Qg
BEGIN
P
WRITELN('LEAVE Q@');
END;
PROCEDURE R;
BEGIN
~IFON <= 10
THEN Q@ _
WRITELN('LEAVE R');
END;
BEGIN
CN := O
WHILE NOT EOF DO
BEGIN
CN := CN+ 13
R
WRITELN;
END;
END.

PASCAL COMPILER
Page 37

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

Assume that the following are the three inputs for the program.”™

THIS IS THE FIRST STRING <return>
<return>
LAST STRING <ETX>

Then the following output results.

THIS IS THE FIRST STRING
LEAVE P
LEAVE Q@
LEAVE R

#
LEAVE R

LAST STRING
LEAVE P
LEAVE Q
LEAVE R

The EXIT(Q) statement causes PROCEDURE P and Q to stop. Processing continues
following the call to @ inside PROCEDURE R. Thus, the only line of output
following "#" is "LEAVE R" at the end of PROCEDURE R. In the two cases where
the EXIT(Q) statement is not executed, processing proceeds normally through the ends
of procedures P and Q.

If the procedure identifier passed to EXIT is a recursive procedure, the most recent
invocation of that procedure is exited. If, in the above example, one or both of the
procedures P and G declared and opened some local files, an implicit CLOSE(F) is
performed when the EXIT(Q) statement is executed, as though the procedures P and
Q had stopped normally. '

The EXIT statement can also be used to exit a Pascal program by EXIT(PROGRAM)
or EXIT(programname).

PASCAL COMPILER
Page 38

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.6.5 Long Integers

In UCSD Pascal, an optional length attribute can be included with the predeclared
type INTEGER. INTEGERs declared in this way are called LONG INTEGERS. They
are intended for business, scientific, or other applications which need extended
number lengths with complete accuracy. The usual limit for variables of type
INTEGER is from -32,768 to 32,767.

This extension supports the four basic Standard INTEGER arithmetic operations
(addition, subtraction, multiplication, and division), as well as routines that facilitate
conversion to strings and Standard INTEGERs. Input/Output, in-line declaration of

constants, and inclusion in structured types are all fully supported and function as
they do with Standard INTEGERS.

LLONG INTEGERSs are declared with the Standard identifier INTEGER followed by a
length attribute in square brackets. This length is an unsigned number, no greater
than 36, which specifies the minimum number of decimal digits the LONG INTEGER
must be able to represent.

The following example defines X as an integer with a minimum of eight digits.
VAR Xz IN'i'EGER[B]; |

Constants are defined in the normal manner, as shown below.
CONST LARGE = 79413034.;

Because of its magnitude, LARGE is by default a LONG INTEGER and can be used
anywhere a LONG INTEGER is acceptable.

Make sure that sufficient memory has been allocated by the declared length attribute
to store the result of assignment or arithmetic expression statements. INTEGER
expressions are implicitly converted to LONG INTEGERs as required by the space

~ demands of an operation or assignment. The reverse is not true. Some examples of
conversions are as follows,

'PASCAL COMPILER
- Page 39

UCSD PASCAL DIFFERENCES FROM _STANDARD PASCAL

VAR 1: INTEGER; -
L: INTEGERINI; | Where N is an integer constant <= 36. }

S: REAL;
1 := L; { Syntax error, see TRUNC(L). }
L :=-L; { Correct. }
L = 1 | Always correct. }
L := S; { Never accepted. |
5 = L { Never accepted. }

Arithmetic operations which can be used in conjunction with LONG INTEGERs are +,
-, *, DIV, and unary plus/minus. On assignment, the length of the LONG INTEGER
is adjusted during execution to the declared length attribute of the destination
variable. Overflow may result if the destination variable is not large enough to hold
the source.

The comparisons =, <, », <=,.>=, and <> can be used in expressions that contain both
LONG INTEGERs and INTEGERS, '

The function TRUNC accepts both LONG INTEGERs and REALs as arguments. Thus
TRUNC(L), where L is a LONG INTEGER, converts L to an INTEGER. Overflow
results if L is greater than 32,767 or less than -32,768.

The procedure STR{L,S} converts the INTEGER or LONG INTEGER L into a string
(complete with minus sign if needed), and places it in the STRING S. The following
program fragment illustrates a suitable "dollar and cent" routine.

STR(L,S);
INSERT(*.',5,LENGTH{(S)-1)}
WRITELN(S) ;

Pascal syntax requires that parameter types be specified by type identifiers.
Therefore, attempting to use an "INTEGER[<length>]" style declaration in a
parameter list results in a syntax error, which can be prevented by declaring an
appropriate type identifier, as illustrated below. '

TYPE LONG = INTEGER{18];
PROCEDURE BIGNUVBER (BANKACCT: LONG);

- PASCAL COMPILER
Page 40

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.6.6 Packed Variables

Arrays and records can be packed in UCSD Pascal, with some limitations. Packed
records require less room in memory and on diskettes. However, extra execution
time is required for the packing and unpacking.

The Standard intrinsics PACK and UNPACK are not supported because these functions
are performed autornatically on each element of a type or variable that is declared as
packed. '

2.6.6.1 Packed Arrays

This Pascal packs arrays and records if the ARRAY or RECORD declaration is
preceded by the word PACKED. For example, consider the following declarations.

A: ARRAY[0..9] OF CHAR;
- B: PACKED ARRAY[0..9] OF CHAR;

The array A occupies ten l6-bit words of memory with each element of the array
occupying one word. The PACKED ARRAY B, on the other hand, accupies only five
words since each 16-bit word contains two eight-bit characters. Therefore, each
element of the PACKED ARRAY B is eight bits long.

PACKED ARRAYs need not be restricted to arrays of type CHAR, as shown below.

C: PACKED. ARRAY[0..1] OF 0..3;
. Dt PACKED ARRAY[1..9] OF SET OF 0..15;
E: PACKED ARRAY[O0..239,0..319] OF BOOLEAN;

f£ach element of PACKED ARRAY C is only two bits long, since only two bits are
needed to represent the values in the range 0..3, Therefore, C occupies only one
16-bit word of memory, and 12 of the bits in that word are unused. PACKED ARRAY
D is a nine-word array, since each element of D is a SET which can be represented in
a minimum of 16 bits. Each element of a PACKED ARRAY OF BOOLEAN, as in the
case af £ in the above example, occupies only one bit.

The word PACKED must occur before the last use of ARRAY for an array to be
packed. Therefore, the following two declarations are not equivalent.

F: PACKED ARRAY[0..9] OF ARRAY[0..3] OF CHAR;
G: PACKED ARRAY[G..9,0..3]1 OF CHAR;

PASCAL COMPILER
FPage 41

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

The second occurrence of the reserved word ARRAY in the declaration of F causes
the packing option in the Compiler to be turned off so that F becomes an unpacked
array of 40 words. On the other hand, the PACKED ARRAY G occupies 20 total-

words, because the word ARRAY occurs only once in the declaration. If F had been
deciared as

Fi PACKEb ARRAY[0..9] OF .PACKED ARRAY[0..3] OF CHAR;
Or as

F: ARRAY[0..9] OF PACKED ARRAY[0..3] OF CHAR;
G and F would have had identical configurations.

PACKED only has true significance before the last appearance of the word ARRAY in
a declaration of a PACKED ARRAY. When in doubt, place the word PACKED before
every appearance of the word ARRAY to ensure that the resulting array is PACKED.

‘The resuiting array is only packed if the final type of the array is a scalar, subrange,
or set which can be represented by eight bits or less. The following declaration
resuits in no packing because the final type of the array cannot be represented in a
field of eight bits.

H: PACKED ARRAY[O0..31 OF 0..1000;
Therefore, H is an array which occupies four lé-bit words.

Packing never occurs across word boundaries. Thus, if the type of the element to be
packed requires a number of bits that do not divide evenly into 16, there are some
unused bits at the high-order end of each of the words comprising the array.

For the purposes of assignment and comparison, a string constant is compatible with a
PACKED ARRAY OF CHAR but not with an unpacked ARRAY OF CHAR. In a
similar fashion, no packed array or record can be assigned to or compared with -an
unpacked version of the same type.

Initialization of a PACKED ARRAY OF CHAR can be accomplished very efficiently
with the intrinsics FILLCHAR and SIZEOF.

-PASCAL COMPILER
Page 42

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

PROGRAM FILLFAST; : o
VAR A: PACKED ARRAY[O .10] OF CHAR; -
BEGIN -
FILLCHAR(A[O] SIZEOF(A),);-
WRITELN(A) ; - -
FILLCHAR(ALO], SIZEOF(A),'B')-
WRITELN(A);
END.

The above sample program fills the entire PACKED ARRAY A with blanks. -Refer to
the descriptions of FILLCHAR and SIZEOF in Section 3.

2.6.6.2 Packed Records

The follawing RECORD specification declares a RECORD with four fields. The
entire RECORD occupies one 16-bit word, because it is declared as a PACKED
RECORD.

VAR R: PACKED RECORD
1,3,K: 0..31;
B: BOOLEAN
-ENDy;

The variabies I, J, and K each occupy five bits in the word. The Boolean variable B
is allocated the sixteenth bit of the same word.

Just as PACKED ARRAYs can be multidimensional, PACKED RECORDs can contain
fields which themselves are PACKED RECORDs or PACKED ARRAYs. Again, slight
differences in the way in which declarations are made affect the degree of packing
achieved. For example, the following declarations are not equivalent.

VAR A: s VAR B: _
- PACKED RECORD _ : PACKED RECORD
C: INTEGER} C: INTEGER}
F:PACKED RECORD F sRECORD
R: CHAR; e ' R:CHAR;
K: BOOLEAN K 1 BOOLEAN
END; : . ENDg : -
H:PACKED ARRAY[0..3] OF CHAR H:PACKED ARRAY[O0..3] OF CHAR
END ENDj;

- PASCAL COMPILER
Page 43

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

As with packed arrays, the word PACKED must appear with every occurrence aof the
reserved word RECORD in order for the PACKED RECORD to retain its packed
qualities throughout all fields of the RECORD. In the above example, only RECORD
A has all of its fields packed into one word., 'In B, the F field is not packed and
therefore occupies two 16-bit words. A packed or unpacked ARRAY or RECORD
which is a field of a PACKED RECORD always starts at. the beginning of the next
word boundary. Thus, in the case of A, even though the F field does not completely
fill one word, the H field starts at the beginning of the next word boundary.

Whben a record, either packed or unpacked, contains a case variant, the field is
allocated enough space to contain the largest variant. Consider the following
example.

VAR K: PACKED RECORD
B: BOOLEAN;.
CASE F: BOOLEAN OF
TRUE: (Z: INTEGER);
FALSE: (M: PACKED ARRAY[0..3} OF CHAR)
END '
END;

In this example, the B and F fields are stored in two bits of the first 16-bit word of
the record. The remaining 14 bits are not used. Since the size of the case variant
field is always the size of the largest variant, the case variant field in the example
occupies two words. Thus, the entire PACKED RECORD occupies three words. ..

2.6.6.3 ° Restrictions on Packed Variables

This Pascal does not support the Standard procedures PACK and UNPACK. If a type
or variable is declared as packed, the packing and unpacking are automatic.

No element of a PACKED ARRAY or field af a PACKED RECORD can be passed as
a variable (call-by-reference) parameter to a routine. Packed variables can, however,
be passed as value parameters. '

2.6.7 Parametric PROCEDURES and FUNCTIONS

This Pascal does not allow PROCEDURES or FUNCTIONS to be declared as formal
parameters in the parameter list of a PROCEDURE or FUNCTION.

PASCAL COMPILER
- Page 44

UCSD PASCAL DIFFERENCES FROM STANDARD PASCAL

2.6.8 Program Headings

Although the Pascal Compiler permits a list of file parameters to be present
following the program identifier, these parameters are ignored by the Compiler and
have no affect on the program being compiled. As a result the following two
program headings are equivalent.

PROCRAM DEMO(INPUT ,QUTPUT)
PROGRAM DEMO;

With either of these program headings, the program has three files predeclared and
opened by the System. They are INPUT, QUTPUT, and KEYBOARD; all are type
INTERACTIVE. To declare additional files, the file declarations must be declared
with the program's other VAR declarations. '

2.6.9 Sets

Sets are defined as in Standard Pascal. Sets of subranges of integers are limited to
the positive integers. The lower bound of a set declaration must be no less tham 0.
The value of the upper bound of a set declaration must be no greater than 4079,
regardless of the value of the lower bound.

Comparisons and operations on sets are allowed only between sets which either have
the same base type or are subranges of the same underlying type. For example, in
the program below the base type of set S is the subrange type 0..49, while the base
type of set R is the subrange type 1..100. The underlying type of both sets is the
type INTEGER, which, by the above definition of compatibility, implies that the
comparisons and operations on sets S and R in the following program are legal.

PROGRAM SETOOMPARE ;
VAR S: SET OF 0..49;
R: SET QF 1..100;
BEGIN
S := [0,5,10,15,20,25,30,35,40,45];
R := [10,20,30,40,50,60,70,80,90];
iIF s =R
THEN WRITELN('... oops ...')
ELSE WRITELN('sets work');
S := 5 + Ry
END.

PASCAL COMPILER .
- Page 45

- UCSD PASCAL DIFFERENCES FROM _STANDARD PASCAL.

In the following example, the construct I = J is not legél, since the two sets are of
two distinet underlying types.

PROGRAM ILLEGALSETS;
TYPE SPELL={ZERQ,ONE, TWO);
VAR T: SET OF SPELL;:
J: SET OF 0..2;
‘BEGIN
I := [ZERO];
J := [1,2];
IF I =3
THEN ... <<<< error here
END. '

2,6.10 Transcendental Functions
In UCSD Pascal, the arctangent function can be called by either ATAN or ARCTAN.

Since Pascal has a limited set of transcendentals, formulas for the more common
trancendental functions are listed in the Appendix.

2.6.11 Size Limitations
The following is a list of size limitations that apply to this implementation of Pascal.

e Local variables in a PROCEDURE or FUNCTION can occupy a maximum of
16,383 words of memory.

e The maximum number of characters in a STRING variable is 255,

e The maximum number of words allocated to a SET is 255. Therefore, the
maximum number of elements in a set is (255%16)=4080.

® The maximum number of routines within a segment is 256.

8 The maximum integer is 32,767, and the minimum integer is -32,768.

PASCAL COMPILER
Page 46

SECTION 3: PROCEDURES AND FUNCTIONS

This section describes the non-Standard intrinsic procedures and functions included in
this version of Pascal. The intrinsics are listed in alphabetical order. Indications of
the use of these intrinsics are given in Section 2.

Many of these intrinsics were created to provide access to internal System
capabilities. Because they are designed for speed and knowledgeable use, they
provide little in the way of parameter checking. Therefare, range and validity
checks are your responsibility. The improper use of some of these intrinsics can
cause the System to stop functioning, requiring that you turn the computer off for
approximately 10 seconds and then back on. Intrinsics which require particular care
are noted in their descriptions.

Required parameters are listed with the function/procedure identifier, while optional
parameters are listed in brackets. The default values for optional parameters are
described in the text.

PASCAL COMPILER
Page 47

PROCEDURES AND FUNCTIONS

3.1 ATTACH
ATTACH is a procedure with the form
ATTACH (SEM:SEMAPHORE ; VECTOR: INTEGER) ;

ATTACH has no effect in this version of Pascal. It is included here only for
completeness. :

. PASCAL COMPILER
" Page 48

PROCEDURES AND FUNCTIONS

3.2 BLOCKREAD
BLOCKREAD is a function with the form
BLOCKREAD (FILEID,ARRAY,BLOCKS, [RELB;CI:K] }: INTEGER;

BLOCKREAD reads the number of blocks specified by BLOCKS from FILEID into
ARRAY and returns the number of blocks read. If the value returned does not equal
BLOCKS, the end of file was encountered or a read error occurred. If the end of
file is encountered, EOF is TRUE.

FILEID is an untyped file (see Section 2.2.3.2). ARRAY can be any sort of array or
any sort of variable, since BLOCKREAD does no checking. BLOCKS is an integer.

If the cptmnal parameter RELBLOCK is present, it is the number of the block
relative to block zero, from which BLOCKREAD starts reading.

If RELBLOCK is not present, records are read seque'ntiaily from the current file
location. i_mmediately after FILEID has been initialized with RESET or REWRITE,
BLOCKREAD starts from block zero. Successive BLOCKREADSs continue to read
sequential records uniess RELBLOCK is used or FILEID is re-initialized with RESET
or REWRITE. '

l
If the parameter ARRAY contains a subscript (for example, BIG_TABLE[1024]) and
ARRAY is a PACKED ARRAY OF CHAR, BLOCKREAD fills ARRAY starting with
that element. [f ARRAY is a record that is not packed, it can contain a field
specification and filling starts from there.

Note: This is a dangerous intrinsic because the bounds of ARRAY are not checked.
You are responsible for seeing that no important memory is altered.

PASC_A_L COMPI.LER
~ Page 49 '

PROCEDURES AND FUNCTIONS

3.3 BLOCKWRITE
BLOCKWRITE is a function with the form
BLOOKWRITE (FILEID,ARRAY,BLOCKS, [RELBLOCK]): INTEGER;

BLOCKWRITE writes the number of blocks specified by BLOCKS from ARRAY into
FILEID and returns the number of blocks written. If the value returned does not
equal BLOCKS, either the end of file was encountered or a write error occurred. If
the end of file is encountered, EOF is TRUE. FILEID is an untyped file (see Section
2,2,3.2), and ARRAY can be any sort of array, or anythmg else, as mentloned m
BLOCKREAD. BLOCKS is an integer. :

If the optional parameter RELBLOCK is present, it is an mteger indicating the block,
relative to block zero, at which writing starts.

If RELBLOCK is not present, blocks are written to FILEID sequentially from the
current file location. After FILEID is initialized with RESET or REWRITE, '
BLOCKWRITE starts with block zero. Successive calls to BLOCKWRITE continue
writing sequentially unless RELBLOCK is used or FILEID is re—lmtxallzed thh RESET
or REWRITE. ' '

As with BLOCKREAD, a subscript of the parameter ARRAY, with ARRAY a
PACKED ARRAY OF CHAR, causes the transfer to start with that element of
ARRAY. Also as with BLOCKREAD, a record can have a field specification.

Note: This is a dangerous intrinsic because the bounds of ARRAY are nat checked.
‘You are responsible for seeing that no important memory is altered.

PASCAL COMPILER
Page 50

'PROCEDURES AND FUNCTIONS

3.4 CHAIN
CHAIN is a procedure with the form
CHAIN (EXEC _OPTIONS:STRING) ;

A call to CHAIN causes the System to eX(ecute EXEC_OPTIONS after the calling
program (the "chaining program") has stopped. The effect is the same as typing X
for X(ecute and then entering the characters in EXEC_OPTIONS. Neither the System
promptline nor the X(ecute prompt are displayed; the System 1rnmedlately performs
the actions indicated by EXEC _OPTIONS.

EXEC_OPTIONS is an execution option strmg, as defined in the UCSD p- System
P-Code manual.

If a program or sequence of programs contains more than one call to CHAIN, the
EXEC _OPTIONS are saved and performed on a first-in, first-out basis before control
of the System is returned to you. A call to CHAIN with an empty
string--CHAIN(");--clears the queue.

An execution error or an error in an EXEC_OPTIONS string clears the queue and
returns control of the System to you. A call to EXCEPTION can alsc clear the
queue. See the intrinsic EXCEPTION in Section 3.9.

CHAIN is a procedure in the Operating System's COMMANDIO unit. To use it, a
program or unit must declare "USES COMMANDIG;".

. PASCAL COMPILER
. Page 51

PROCEDURES AND FUNCTIONS

3.5 CLOSE
CLOSE is a procedure with the form
CLOSE (FILEIDL,OPTION]);

Depending on the OPTION specified and the type of file, CLOSE can close a file,
make a file permanent, or delete or truncate a file.

FILEID is the name of an internal file. Typically, it is a diskette file that was
opened with a previous RESET ar REWRITE and associated with an external file in
the System. See Sections 2.2.5 and 2.2.6 on RESET and REWRITE.

OPTION need not be present. If it is present, it can be NORMAL, LOCK, PURGE,
or CRUNCH.

If OPTION is not present or is NORMAL, CLOSE closes the file. If the file was
opened using REWRITE and is a diskette file, it is deleted from the diskette
directory.

If the file associated with FILEID is on a block-structured device such as a diskette
and was opened with a REWRITE, the LOCK option makes it permanent in.the
directory. With any other type of device, a NORMAL close is performed.

If the file associated with FILEID is on a block-structured device; the PURGE option
deletes it from the directory. If the file associated with FILEID was a device and
not a block-structured volume, the device goes off-line. If no physical file or device
was associated with FILEID, a NORMAL close is done.

The CRUNCH option LLOCKs the file and truncates it at the point of last access so
that the position at the last GET or PUT becomes the end of file.

All CLOSESs, regardless of the option, mark the file as closed and make the implicit
variable FILEID undefined. CLOSE on a CLOSEd file does nothing.

PASCAL COMPILER
Page 52

PROCEDURES AND FUNCTIONS

3.6 CONCAT
CONCAT is a function with the form
CONCAT (SOURCE_LIST): STRING;

This function returns a string which is the concatenation of the strings passed to it.

" SOURCE_LIST is a list of string variables, constants, or literal values. Any number

of strings, separated by commas, can appear in SOURCE_LIST. The CONCAT
function is illustrated in the following program segment.

SHORTSTRING := 'THIS IS A STRING';

LONGSTRING := 'THIS IS A VERY LLONG STRING.';

LONGSTRING := CONCAT('START ',SHORTSTRING,'-',LONGSTRING);
WRITELN(LONGSTRING) 3

This segment prints the following.

START THIS IS A STRING-THIS 1S A VERY LONG STRING.

PASCAL COMPILER
Page 53

PROCEDURES AND FUNCTIONS

3.7 COPY
COPY is a function with the form

COPY {(SOURCE, INDEX,SIZE): STRING;
This function returns a string containing the number of characters (specified by SIZE)
copied from SOURCE, starting at the position in SOURCE indicated by INDEX.
SOURCE is a string, and INDEX and SIZE are integers.
The following example illustrates the use of the COPY function.

TL := '"KEEP SOMETHING HERE';

KEPT := COPY{TL,POS('S',TL},9);

WRITELN(KEPT) ;

This example prints the following.

SOMETHING

PASCAL COMPILER
Page 54

PROCEDURES AND FUNCTIONS

3.8 DELETE
DELETE is a procedure with the form
DELETE (DESTINATION, INDEX, SIZE);
This procedure removes the number of characters specified by SIZE from
DESTINATION, starting at the INDEX specified. DESTINATION is a string and
INDEX and SIZE are integers.
The following example illustrates the use of the DELETE function.
OVERSTUFFED := 'THIS STRING HAS TOO MANY CHARACTERS IN IT.';
DELETE (OVERSTUFFED, POS ('HAS ' ,OVERSTUFFED) +3,4);
WRITELN{OVERSTUFFED) ;

This example prints the following.

THIS STRING HAS MANY CHARACTERS IN IT.

"PASCAL COMPILER
-Page 55

PROCEDURES AND FUNCTIONS

3.9 EXCEPTION
EXCEPTION is a procedure with the form

EXCEPTION (STOPCHAINING:BOOLEAN) ;

EXCEPTION turns off all redirection. If STOPCHAINING is TRUE, the queue of
EXEC:OPTIONS created by CHAIN is cleared (see the intrinsic CHAIN, Section 3.4).

When an execution error occurs, an EXCEPTION(TRUE) call is made; leaving

redirection on after an error occurs would leave the System in an indeterminate
state.

See the UCSD p-System P-Code manual for more information on redirection.

EXCEPTION is a procedure in the Operating System's COMMANDIO unit. Before
you can use it, your program or unit must declare "USES COMMANDIO;".

PASCAL COMPILER

" Page 56

PROCEDURES AND FUNCTIONS

3.16 FILLCHAR
FILLCHAR is a procedure with the form
FILLCHAR (DESTINATION, LENGTH,CHARACTER) 3

FILLCHAR fills DESTINATION with LENGTH instances of CHARACTER.
DESTINATION can be any sort of array, including subscripted arrays. It can also be
any other sort of variable, but caution must be exercised. If it is a record, it can
have a field specification. LENGTH is an integer. CHARACTER is a single
character.

This resuit of FILLCHAR could also be obtained by the following program segment.

A[0] := <character>;
MOVELEFT(AL03,A[11,LENGTH-1);

However, FILLCHAR is twice as fast because no memory reference is needed for a
source.

If DESTINATION is subscripted, FILLCHAR begins filling from the subscripted
element. The same applies if DESTINATION is a record with a field specification.

Note: FILLCHAR is a dangerous intrinsic and does no checking. Use it with
caution.

PASCAL COMPILER
Page 57

PROCEDURES AND FUNCTIONS

3.11 GOTOXY
GOTOXY is a procedure with the form
GOTOXY (XCOORD,YCOORD: INTEGER) ;

This procedure sends the CONSOLE:'s cursor to the coordinates specified by XCOORD
and YCOORD. The upper left corner of the screen is (U 1)

XCOORD can be from 0 to 79 and YCOORD can be from D to 23 in all modes -
(pattern, text, and multicolor; see Section 6). '

PASCAL COMPILER
Page 58

PROCEDURES AND FUNCTIONS

3.12 HALT
HALT is a procedure with the form
HALT ;

This procedure generates a HALT, causing a runtime error to occur. The effect is -
similar to pressing the <break> key while a program is running. If the error message
file (SYSTEM,SYNTAX) is present, the console displays an error message saying that
the program has stopped itself as shown below.

Programmed HALT
Segment <segment name> Proc# <number> OQOffset# <number>

Type <space> to continue

If the error message file is not present, error #14 is given.

PASCAL COMPILER
Page 59

PROCEDURES AND FUNCTIONS

3.13 INSERT
INSERT is a procedure with the form
INSERT (SOURCE ,DESTINATION, INDEX) ;

This procedure inserts the string SOURCE into the string DESTINATION at the
position in DESTINATION ‘indicated by INDEX.

The following program segment illustrates the use of INSERT.

ID := '"INSERTIONS';
MORE := ' DEMONSTRATE';
DELETE (MORE , LENGTH(MORE) , 1) ; | Deletes the final E in

DEMONSTRATE. }
INSERT(MORE, ID,POS('10',ID)); { Inserts " DEMONSTRAT" between
"INSERT" and "IONS". }
WRITELN(ID) ;

This example prints the following.

INSERT DEMONSTRAT IONS

PASCAL COMPILER
Page 60

PROCEDURES AND FUNCTIONS

3.14 IORESULT
IORESULT is a funetion with the form
[ORESULT: INTEGER;

After any I/O operation, IORESULT returns an INTEGER value corresponding to the
values listed below.

The Compiler normally generates test code to be performed after each I/O operation
to see if the operation has failed. If it has, the Compiler stops the program.

Rather than allowing a program to stop, you can turn off 1/0 checking (see Section 7)
and use IORESULT tao see if an I/O operation has failed. If it has, your' program can
take corrective action, such as re-displaying a prompt. |

Since any I/O operation, including WRITE and WRITELN, affects IORESULT (unless
checking is turned off), WRITELN(IORESULT) is not informative. The following code
achieves the desired effect.

CHECK_RESULT := IORESULT;
WRITELN(CHEOK_RESULT) ;

I/O checks are not generated for the procedures UNITREAD or UNITWRITE.

PASCAL COMPILER
Page 61

PROCEDURES AND FUNCTIONS

The table of IORESULT values is in the Appendix and below.

0 = No error

1 = Bad block, parity error (CRC)

2 = lIllegal device number

3 = Iilegal I/O request

4 = 1/O operation cancelled by user (REMIN:, REMOUT:, or PRINTER:)
5 = Volume went off-line "

6 = File lost in directory

7 = Bad file name

8 = No room on volume

9 = Volume not found

10 = File not found

11 = Duplicate directory entry

12 = File already open

13 = File not'open

14 = Bad input information

15 = Ring buffer overflow (caused by pressing <etx> when data is expected)

16 = Write protect
17 = lllegal block
18 = Illegal buffer

The IORESULT value is stored in a single System-wide variable. Therefore,
concurrent processes (see Section 5) which use IORESULT may not receive a correct
value because 1/0O performed by one process could change the information expected
by anether. This information change is quite likely with processes that are
synchronized by attached semaphores. In other multiprocess situations, switching
occurs at explicit SIGNAL and WAIT points, and probiems with IORESULT are easily
avoided. [/O done by the System itself does not affect a program's IORESULT.

27) Blel sec o\WR

PASCAL COMPILER
Page 62

PROCEDURES AND FUNCTIONS

3.15 LENGTH
LENGTH is a function with the form
LENGTH (SOURCE:STRING) : INTEGER;
LENGTH returns the integer value of the dynamic length of SOURCE.
The following program segment illustrates the use of LENGTH.

ASTRING := '1234567'; . |
WRITELN(LENGTH(ASTRING), ' ',LENGTH(''));

This example prints the following.

7 0

PASCAL COMPILER
Page 63

'PROCEDURES AND FUNCTIONS

3.16 MARK
'MARK is a procedure with the form

MARK (VAR HEAPPTR: INTEGER) ;
MARK allocates a Heap Mark Record (HMR} on top of the Heap.
HEAPPTR must be a pointer. It is conventional to make it 8 "INTEGER. The HMR
contains valuable System information, so HEAPPTR must not be used as a pointer to
available data space. To allocate memory, use the Standard procedure NEW or the
intrinsic VARNEW. MARK is included for compatibility with prior versions of UCSD

Pascal.

See the Internal Architecture Guide for more details.

PASCAL COMPILER
"Page 64

PROCEDURES AND FUNCTIONS

3.17 MEMAVAIL
MEMAVAIL is a function with the form
MEMAVAIL: INTEGER;

MEMAVAIL returns the number of unallocated words in memory. This is the number
of words between the Code Pool and the Stack plus the number of words available in
the Heap.

MEMAVAIL does not return the maximum available memory space since there may
be segments in main memory that could be overwritten if necessary. The intrinsic
VARAVAIL should be used to determine space availability.

See the Internal Architecture Guide for more details.

'PASCAL COMPILER
Page 65

PROCEDURES AND FUNCTIONS

3.18 MEMLOCK
MEMLOCK is a procedure with the form
MEMLOCK (SEGLIST:STRING) ;

MEMLOCK loads the designated segments and "locks" them into main memory.
SEGLIST must contain a list of segment names separated by commas.

See the Internal Architecture Guide for more details.

PASCAL COMPILER
Pa_g_e 66

PROCEDURES AND FUNCTIONS

3.19 MEMSWAP
MEMSWAP is a procedure with the form
MEMSWAP (SEGLIST:STRING);

MEMSWAP returns the demgnated (locked) segments to diskette. SEGLIST must
contaln a llst of segment names separated by commas. = - ;

See the Internal Architecture Guide for more details.

PASCAL COMPILER
- Page 67

"PROCEDURES AND FUNCTIONS

3.20 MOVELEFT
' MOVELEFT is a procedure with the form

MOVELEFT (SOURCE,DESTINATION,LENGTH) ;
MOVELEFT.- moves the number of bytes specified by LENGTH from SOURCE into
DESTINATION, starting at the left. SOURCE and DESTINATION. are any sort of
array. Or, as with BLOCKREAD, BLOCKWRITE, and FILLCHAR, they can be of any
other type as well. If either is-an array, it can be subscripted; if either is a record,

it can have a field specification. LENGTH is an integer.

MOVELEFT is a fast intrinsic and does no range checking. Exercise care when you
use this intrinsic.

The following example shows the use of MOVELEFT.
VAR ARAY: PACKED ARRAY [1..30] OF CHAR;

{123456789a123456789b123456789¢c}
"ARAY: THIS IS THE TEXT IN THIS ARRAY

MOVELEFT(ARAY[10],ARAY{1],10)}; _ 7
ARAY: HE TEXT INE TEXT IN THIS ARRAY

MOVELEFT (ARAY[11,ARAY[3],10)
ARAY : HEHEHEHEHEHETEXT IN THIS ARRAY

MOVELEFT (ARAY[231,ARAY[21,8);
ARAY: HIS ARRAYEHETEXT IN THIS ARRAY

The same effect as MOVELEFT(A[LL, AL101,6); is achieved with
FOR 1:=0 TO 5
DO
Al10+I] := A[l+1]y

except that MOVELEFT is much faster.

- PASCAL COMPILER
Page 68

PROCEDURES AND FUNCTIONS

3.21 MOVERIGHT
MOVERIGHT is a procedure with the form

MOVERIGHT (SOURCE,DESTINATION,LENGTH) ;
MOVERIGHT moves the number of bytes speqified by LENGTH from SOURCE into :
the DESTINATION, starting at the right. - SOURCE and DESTINATION are any sort
of arrays. As with MOVELEFT, they can be any other type as well. Either can have

a subscript or, if declared as a record, a field specification. LENGTH is an integer.

This procedure is the counterpart to MOVELEFT. ‘Note: MOVERIGHT does no
range checking. Exercise care when you use this intrinsic.

The following example shows the use of MOVERIGHT.
VAR ARAY: PACKED ARRAY [1..30] OF CHAR;

{123456789312345678913123456789c} '
ARAY: THIS IS THE TEXT IN THIS ARRAY

MOVERIGHT (ARAY[101,ARAY[11,9);
ARAY: HE TEXT IHE TEXT IN THIS ARRAY

MOVERIGHT (ARAY[3],ARAY[11,9);
ARAY: EHEHEHEHEHE TEXT IN THIS ARRAY

The same effect as MOVERIGHT(A[1], A[10},6); is achieved with
FOR I:=5 DOWMNTO O
DO
AL10+1] := A[1+11];

except that MOVERIGHT is much faster.

- PASCAL COMPILER
" Page 69

“PROCEDURES - AND FUNCTIONS

3.22 POS
PQOS is a function with the form
POS (STRING,SOURCE): INTEGER;

POS. attempts to match STRING te a.substring of SOURCE. If STRING is matched,
POS returns the: location of the first character of the matched pattern. If STRING
is not matched, POS returns.zero. STRING and SOURCE are string variables or
constants. : :

The following program segment illustrates the use of POS.

{ 123456789a123456789b123456789c12 }
STUFF := 'TAKE THE BOTTLE WITH A METAL CAP';
PATTERN := 'TAL';
WRITELN(POS (PATTERN, STUFF)) ;
PATTERN := 'CZECHOSLOVAKIA';
WRI TELN(POS (PATTERN, STUFF)) ;.

This example prints the following.

26
0

. PASCAL COMPILER
.- Page 70

PROCEDURES AND FUNCTIONS

3.23 PWROFTEN
PWROFTEN is a function with the form

PWROFTEN (EXPONENT : INTEGER) : REAL;
This function returns the value of ten to the EXPONENT power,
The legal range of EXPONENT is 0 to 127.
For example, the following program prints +1.0000000000000E+112.

VAR NUM_IN: INTEGER;

NLM_OUT :REAL ;
BEGIN
NUM_OUT : =PWROF TEN(NLM_IN) ;

WRITELN(NLM_OUT) ;
END.

PASCAL COMPILER
Page 71

PROCEDURES AND FUNCTIONS

3.24 REDIRECT
REDIRECT is a function with the form
REDIRECT (EXEC_OPTICNS:STRIP\G) : BOOLEAN;

REDIRECT causes redirection by performing all the options specified in EXEC
OPTIONS. If all goes well, the function returns TRUE. If an error occurs, it
returns FALSE. EXEC_OPTIONS is an execution option string as defined in-the
LJCSD p-System P-Code owner's manual. The string should contain only option
'specifications, not the name of a file to execute. To execute a program from
another program, see the CHAIN intrinsic, Section 3.4.

If an error occurs during a call to REDIRECT, the state of redirection is
indeterminate, resulting in a dangerous condition. If REDIRECT returns FALSE, your
program should follow it with a call to EXCEPTION, in order to turn off all
redirection. If you do not, the results are unpredictable. = See the intrinsic:
EXCEPTION, Section 3.9,

REDIRECT is a procedure in the Operating System's COMMANDIC unit. Before you
can use it, your program or unit must contain the declaration "USES COMMANDIO;".

More information about redirection can be found in the P-Code manual.

"‘PASCAL COMPILER
Page 72

PROCEDURES AND FUNCTIONS

3.25 RELEASE
RELEASE is a procedure with the form
RELEASE (VAR HEAPPTR: INTEGER);

The procedure RELEASE cuts back the Heap from the current Heap Mark Record
(HMR) to the HMR designated by HEAPPTR. HEAPPTR must have been initialized
by the MARK procedure. RELEASE is included for compatibility with prior versions
of UCSD Pascal. ' ' ‘ : '

MARKSs and RELEASEs must be matched properly. For additional information, see
the important statement at the end of the discussion of memory allocation (Section
2.3.1). '

See the Internal Architecture Guide for more details.

PASCAL COMPILER
Page 73

.PROCEDURES AND FUNCTIONS

3.26 SCAN
SCAN is a function with the form
SCAN (LENGTH,PARTIAL_EXPRESS ION,ARRAY): INTEGER;

SCAN scans ARRAY for the number of characters indicated by LENGTH or until it
finds a character that satisfies the PARTIAL_EXPRESSION. The function returns
the offset from the starting position in ARRAY to the point at which it stopped.
LENGTH is an integer, ARRAY is usually a PACKED ARRAY OF CHAR, and
PARTIAL_EXPRESSION is a "<>" or an "=" followed by a single character in quotes
or a character of type CHAR. :

If the position in ARRAY at which SCAN starts satisfies the PARTIAL EXPRESSION,
SCAN returns zero. If the PARTIAL_EXPRESSION is not satisfied, SCAN returns
LENGTH. - If the PARTIAL_EXPRESSION is satisfied at some intermediate location,
SCAN returns the offset from the starting position to that location.

If LENGTH is negative, the SCAN is from right to left and returns a negative value.

ARRAY can be subscripted. If so, SCAN starts scanning at that location. ARRAY
can in fact be of any type, but you should exercise caution to be sure that the index
returned is valid.

The following program segment illustrates the use of SCAN.

VAR DEM: PACKED ARRAY[0..52] OF CHAR;
BEGIN
{123456789a123456789b1234567890123456789d123456789%¢e1}
DEM := '.....THE TERAK IS A MEMBER OF THE PTERCDACTYL
FAMILY.'; @@
WRITELN(SCAN(-26,=":",DEM[30]));
WRITELN(SCAN(100,<>'."',DEM))
WRITELN(SCAN(15,=" ',DEM[0]));
END.

This example prints the following.
-26

5
B

'PASCAL COMPILER
Page 74

 PROCEDURES AND FUNCTIONS

3.27 SEEK
SEEK is a procedure with the form

SEEK (FILEID, INDEX)
SEEK changes the file window variable F to point:to-the record in FILEID specified .
by INDEX. The first record in FILEID is zero. EOF and EOLN are set to FALSE. -
FILEID is a file of any structured type; i.e., it is not a text file (TEXT,

INTERACTIVE, or FILE OF CHAR) or an untyped file. INDEX s an integer.

A GET or PUT should immediately follow a SEEK. Otherwise, the window contents
are unpredictable.

“PASCAL COMPILER
Page 75

‘PROCEDURES AND FUNCTIONS

3.28 SEMINIT
SEMINIT is a procedure with the form
SEMINIT (VAR SEM:SEMAPHORE; SEM COUNT : INTEGER) ;

SEMINIT initializes the semaphore SEM to the value SEM_COUNT and establishes: an
empty queue. See. Sectlon 5. - : :

Note: Failure to lmtlalxze a semaphore before using it in a SIGNAL or WAIT puts
the System in an indeterminate state. 3 :

PASCAL COMPILER
- Page 76

PROCEDURES -AND FUNCTIONS

3.29 SIGNAL
SIGNAL is a procedure with the form
SIGNAL (VAR SEM: SEMAPHORE) ;

If no processes are waiting for the semaphore SEM, SIGNAL increments the count
associated with SEM. If one or more processes are waiting for SEM, SEM is not
incremented and the process at the head of SEM's queue (the process with the highest
priority) is added to the ready queue, where it-competes with other ready processes "
for processor time. See Section 5. : :

- PASCAL COMPILER
- Page 77

~PROCEDURES AND FUNCTIONS

3.30 SIZEOF
SIZEOF is a function with the form
SIZEQF (VARIABLE_CR___TYPE_IDENTIFIER)-:' INTEGER

SIZEQF returns the number- of bytes allocated to the variable or type. - This function
is often useful as a parameter to FILLCHAR, MOVELEFT, or MOVERIGHT.

- PASCAL COMPILER
Page 78

PROCEDURES AND FUNCTIONS

3.31 START
START is a procedure with the form
START (PROCESS CALL[,PROCESSIDL, STACKSIZEL ,PRIORITY111);

START ‘initiates a process, The PROCESS CALL parameter identifies the PROCESS
to be started and may optionally pass parameters to the PROCESS.

PROCESSID is a variable of type PROCESSID, STACKSIZE is an integer, and
PRIORITY is in the range [0..255]. These three parameters are optional.

Every process invocation (i.e., every call to START) is assigned a PROCESSID. This
parameter, if present, is set to the PROCESSID value. PROCESSIDs are intended
for the System's use. ' '

STACKSIZE, if present, allocates stack space to the process. STACKSIZE defaults
to 200 words. A process needs four words plus the number of words occupied by
local variables plus room for the activation records of procedures started by the
process plus space for the evaluation stack. If a process is allocated less memory
than it needs, the program ends with a stack overflow. To determine the best value
for STACKSIZE (i.e., the one that uses the least memory), start with a large value
such as 3000. If the program is too large, use a smaller value. Gradually reduce
the value of STACKSIZE until the progfam no longer runs. The minimum value at
which the program runs is the best value for STACKSIZE.

PRIORITY, if present, specifies the priority of the process. Priorities dstermine the
ordering of a queus waiting for a semaphore, and the ordering of the gueue of all
processes that are ready to run. The highest (most urgent) priority is 255.
PRIORITY defaults to the priority of the STARTing process. If no PRIORITY
parameter appears, the process's priority is the same as the priority of the process
that calls START. The default pridrity is 127.

The following examples show the use of START.
start (PLOP};
start (RED(1,J), PID);
start (SHAWNEE(10), ID, 500);
start (RED(6,14), PID, SSIZE, 46);
See Section 5 for more information on concurrent processes.

PASCAL COMPILER
- Page 79

‘PROCEDURES AND FUNCTIONS

3.32 STR
STR is a procedure with the form
STR (LONG,DESTINATION) ;
STR converts LONG into a string and places it in DESTINATION. - This intrinsic is
chiefly used to format long integers for output. LONG is either an integer or a long
integer. DESTINATION is a string.
See Section 2.6.5 for more about long. integers.
The following program segment shows the use of STR.
INTLONG := 102039503;
STR(INTLCNG INTSTRING) ;
INSERT('. ', INTSTRING,PRED(LENGTH{ INTSTRING))) ;
WRITELN(' $' , INTSTRING) 3

This example prints the following.

$1020395.,03

PASCAL COMPILER
- Page 80

~ PROCEDURES AND FUNCTIONS

3.33 TIME
TIME is a procedure with the form‘
TIME (VAR HIWORD,LOWORD: INTEGER) ;

The TIME procedure returns the value of the System's clock in 60ths of a second.
The value is stored in HIWORD, LOWORD as one 32-bit unsigned integer. No
conventions exist to allow you to treat the value returned by TIME as the time of
day. TIME is usually used for incremental time measurements, such as calculating
benchrnarks for a program. '

PASCAL COMPILER
Page 81

- PROCEDURES AND FUNCTIONS

3.34 UNITBUSY
UNITBUSY is a function with the form
UNITBUSY (UNITNUMBER): BOOLEAN;

UNITBUSY always returns a value of false. It is included here only for
completeness. = ' |

PASCAL COMPILER
Page 82

- PROCEDURES AND. FUNCTIONS

3.35 UNITCLEAR
UNITCLEAR is a procedure with the form
UNITCLEAR (UNITNUMBER) ;
UNITCLEAR cancels all 1/0s to the specified unit and resets the hardware to its
power-up state. UNITNUMBER is an integer that is the number of a device {see the

Appendix, Section 8,3).

The function JORESULT can detef_rnine 1f an error b.ccurred (see Section 3.14).
IORESULTs are listed in Section 3.14 and the Appendix, Section 8.2.

. PASCAL COMPILER
. Page 83

PROCEDURES AND FUNCTIONS

3.36 UNITREAD

UNITREAD is a procedure with the farm

UNITREAD (UNITNUVBER , ARRAY, LENGTH[, BLLOOKNUVBER [» L INTEGER]) ;

UNITREAD reads the number of bytes specified by LENGTH from ‘the device :
UNITNUMBER inta ARRAY. ARRAY can be of any type, but is usually a PACKED
ARRAY OF CHAR. UNITNUMBER is an integer that is the number of a device (see
the Appendix). UNITREAD is a low-level intrinsic and should be used with extreme

caution. It performs no I/O checking of any sort and receives all characters sent by
the device, including protocols, blank-compressions, and the like.

ARRAY can be subscripted, in which case it is filled starting from that element.

BLOCKNUMBER is only meaningful if UNITNUMBER is a block-structured device.
Then it is the number of the block (zero-based) from which the read starts. If
BLOCKNUMBER is not given, the default is zero.

If INTEGER is equal to 16,384, the destination is VDP memory rather than CPU
memory. ARRAY is then a pointer, with the value INTEGER® being the VDP address
that is to be written to.

For example, the following program reads the first two blocks from unit #4 into VDP
memory starting at address >0000 (the start of the Pattern Descriptor Table) and
defines characters in the character set.

PROCEDURE VDP_WRITE ;
TYPE MEM =RECORD CASE BOOLEAN OF
TRUE: (INT:INTEGER);
FALSE: (PTR: “INTEGER);
END;
VAR VDP :MEM;
BEGIN
VOP.INT:=0; {Starting VDP address.}
UNITREAD(4,VDP.PTR,1024,0,16384);
END;

‘PASCAL: COMPILER
Page 84

PROCEDURES AND FUNCTIONS
The following example illustrates the use of UNITREAD to read from a
non-block-sructured device. '
UNITREAD(7,FILLMVE, 80,,1)

This example reads 80 characters fram REMIN: into the array FILLME. FILLME
must be at least 80 characters long or other data is destroyed.

Note: Because it refers directly to a device, input from UNITREAD cannot be

redirected.

PASCAL COMPILER
" Page 85

~ PROCEDURES AND FUNCTIONS

3.37 UNITSTATUS
UNITSTATUS is a procedure with the form
UNITSTATUS (UNITNUVBER, STATUS_REC',CG\ITROL) H

UNITSTATUS returns information in STATUS REC. . If CONTROL is zero, the
information refers to output. If CONTROL is one, the information refers to input.

UNITNUMBER is an integer that is the number of a device (see the Appendix,
Section 8.3). STATUS REC can be of any type; it should be an area of 30 words.
CONTROL is an integer equal to either O or l.

On a character-oriented device, such as PRINTER:, REMOUT:, or CONSOLE:,
UNITSTATUS changes only the first word of STATUS REC and sets it equal to the
number of characters waiting to be read or written. If no characters are waiting or
UNITSTATUS cannot determine the device's state, it returns a zero.

If the device is a block-structured device (such as a diskette), UNITSTATUS changes

the first four words of STATUS REC as follows. o

Waord one: The number of characters waiting (as with a serial device).
Word twos The number of bytes per sector on the device.

Word three: The number of sectors per track.

Word four: The number of tracks,

Although the remainder of STATUS REC is not affected, these locations are reserved
for possible future use.

PASCAL COMPILER
. Page Bé

PROCEDURES AND FUNCTIONS

3.38 UNITWAIT
UNITWAIT is a procedure with the form
UNITWALT (UNITNUMBER) ;

UNITWAIT always returns immediately. - It is included here only for completeness.

- PASCAL COMPILER
. Page 87

PROCEDURES AND FUNCTIONS

3.39 UNITWRITE
UNITWRITE is a procedure with the form

UNITWRITE (UNITNUMBER, ARRAY, LENGTHL , BLOOKNUVBER][, INTEGER]) 3
UNITWRITE writes the number of characters specified by LENGTH from ARRAY to
the device UNITNUMBER. UNITNUMBER is an integer that is the number of a
device (see the Appendix, Section 8.3).
ARRAY can have a subscript, in which case the transfer begins with that element.
BLOCKNUMBER applies only to block-structured devices and, if present, indicates
the number of the block (zero-based) where the write starts. BLOCKNUMBER
defaults to zero.
INTEGER, if present, may have the same values as in UNITREAD (see Section 3.36).
Because it refers directly to a device, output from UNITWRITE cannoct be redirected.
Note: As with UNITREAD, no 1/O checking is done, nor are any of the

transmission's characters added or modified. UNITWRITE is a low-level intrinsic.
Therefore, it is fast but dangerous.

'PASCAL COMPILER
~ Page 88

PROCEDURES AND FUNCTIONS

3.40 VARAVAIL
VARAVAIL is a function with the form
VARAVAIL (SEGLIST): INTEGER;

VARAVAIL returns the number of words in main memory available for allocation,
after subtracting the words used if the listed segments and all memory-locked
segments are in memory. The value returned is not necessarily the current amount
of memory available. - SEGLIST is a string containing a list of segment names
separated by commas. If a segment name is not recognized by the System, it is
ignored.

VARAVAIL may not be meaningful if a PROCESS is running concurrently. See
START (Section 3.31) for more information.

See the Internal Architecture Guide for more details.

PASCAL COMPILER
Page 89

PROCEDURES AND FUNCTIONS

3.41 VARDISPOSE
VARDISPQOSE is a procedure with the form |
VARDISPOSE (POINTER,COUNT) ;

VARDISPOSE deallocates the number of words specified by COUNT. If COUNT is
incarrect, VARDISPOSE destroys the Heap's integrity, so use extreme caution.

POINTER is an arbitrary pointer type which must have been initialized by a call ‘to"

VARNEW (Section 3.42)., COUNT should have the same value as obtained with
VARNEW. . : IR

See the Internal Architecture Guide for more details.

PASCAL COMPILER
Page 90

-

PROCEDURES AND FUNCTIONS

3.42 VARNEW
VARNEW is a function with the form
VARNEW (POINTER,COUNT): INTEGER;

VARNEW allocates the number of words specified by COUNT. POINTER is an
arbitrary type. : -

Count is an INTEGER. If COUNT words are available, VARNEW returns COUNT.
If COUNT words are not available, VARNEW returns a zero, and no words are -
allocated. You should maintain POINTER and COUNT and use them with
VARDISPOSE (Section 3.41) to return the memory to System use.

See the Internal Architecture Guide for more details,

PASCAL COMPILER
Page 91

PROCEDURES AND FUNCTIONS

3.43 WAIT
WAIT is a procedure with the form
WAIT (VAR SEM:SEMAPHCRE) ;
The WAIT procedure is used in concurrent processing. If SEM is greater than zero,
it is decremented and the process that called WAIT continues. If the count of SEM

is zero, the process waits until SEM is again available.

See Section 5 for examples.

PASCAL COMPILER
‘Page 92

SECTION 4: SEGMENTS AND LINKING

Segments and linking are two major facilities which can help management of program
files and main memory. These facilities bermit the development of very large '
programs in a mierosystem environment and, in fact, have been used extensive_ly in
the development of the System itself. ' '

The techniques offered by the System féll broadly into two categories: run time main
memory management and separate compilation. This section discusses both '
categories. ' ' '

- PASCAL COMPILER
Page 93

L

SEGMENTS AND LINKING

4.1 MAIN MEMORY MANAGEMENT

Not all of a program needs to be in main memory at run time; usually just one
portion of code is required over a given period of time. For most (if not all) of a
program's execution time, the code is a subset of the program. Portions of a p"rogram
which are not currently needed can reside on diskette, freeing main memory for other
uses. b ’ ’

When the System executes a code file, it reads code into main memory and runs it.
When the code has finished running or the space it occupies is needed for some action
of higher priority, the space it occupies can be overwritten with new code or new
data. Code is moved into memory one segment at a fime.

In its simplest form, a code segment includes a main program and all of its routines.
A routine can occupy a segment of its own if it is a SEGMENT routine. SEGMENT

routines can be swapped independently of the main program, s0 declaring a routine to
be a SEGMENT is an efficient means of managing memory.

Routines which are not part of a program's main code are prime candidates for
oceupying their own segments. Such routines include initialization and wrap-up
procedures and routines that are used once ar rarely while a program is executing.

Reading a procedure from diskette into main memory before it is executed takes
time, so carefully select which procedures to make diskette-resident.

The T1 Home Computer has two separate areas for code. The main code pool is
approximately 12K bytes and can only contain p-code. The alternate code pool is
approximately 20K bytes and can hold data, assembly language code, and p-code.
The main code pool is used to hold p-code until it is filled. Remaining p-'c:nde is then
placed in the alternate code pool. However, any segment that contains assembly
language code is put in the alternate code pool. ‘ ' o

If you are not using assembly language, you can manage memory best by keeping each
code segment less than 12K bytes so that the alternate code pool area is used only
for data. If you are using assembly language, it is usually best to put all assembly
language units into one segment, which is then loaded into the alternate code pool.

‘PASCAL 'COMPILER
‘Page 94

SEGMENTS. AND LINKING

4.2 SEPARATE COMPILATION

Separate compilation, also referred to as "external compilation,” is a technique in
which portions of a program are compiled separately and are subsequently executed as
a cogordinated whole. :

Many preograms are too large to compile within the memory confines of a
microcomputer. Compiling pieces of a program separately overcomes this memaory
problem. (The Operating System was compiled in this way.) .

Separate compilation also has the advantage of allowing small portmns of a program .
to be changed without affecting the rest of the code. This saves much time and is .
less error prone. Libraries of correct routines can be built up and used in the
development of other programs..

These considerations also apply to assembly language programs. Large assembly
language programs can often be more effectively maintained in several separate
pieces. When all these pieces have been assembled, a a "link editor" (the System's .
Linker) combines. them by installing the linkages that allow the various pieces to refer
to each other and function as a unified whole.

It may also be desirable for & higher-level language program to refer to an assembly -
language routine for performance reasons or to provide low-level machine- or
device-dependent handling. The System allows assembly language routines to be
linked with other assembly routines or into higher-level hosts (programs or units).
Refer to the LUCSD p-System. Assembler and Linker manuals. .

in this version of Pascal, separate compilation is achieved by the UNIT construct. A
UNIT is a group of routines and data structures. The contents of a UNIT usually
relate to some common application, such as screen control or data file handling. A
program or another UNIT (called a "client module" or "host") can use the routines and
data structures of a UNIT by simply naming it in a WJSES" declaration.

The code for a UNIT that is used by a program may reside in *SYSTEM LIBRARY or
in another code file. If it is in another code file, you can inform the Compiler of .
this with the $UJ compile-time option (see Section 7), and inform the Operating
System by mcludmg the code-file's name in a "library text file." The default library
text file is *USERLIB.TEXT, but it can be changed by an execution option. See -
Section 4.5,

PASCAL COMPILER
Page 95

SEGMENTS AND LINKING

4.3 PROGRAMMING TACTICS

This section offers some advice on the use of SEGMENTs and UNITs. It presents a
plan for the design of a large program, with some strategies that might be employed.
UNITs and SEGMENTSs are useful means of decomposing large programs into sections
that perform independent tasks.

On microprocessor systems, the main bottlenecks in the development of large -
programs are (1) the large number of variable declarations that consume space while
a program is compiling and (2) the large pieces of code taking up memory space while
‘the program is executing. UNITs address the first problem by allowing separaté o
compilation and minimizing the number of variables that are needed to communicate
between separate tasks. SEGMENTs address the second problem by keeping unused
code on diskette and oniy allowing code that is in use to be present in main meirory.

A program can be written with run time memory management and SEparaté '
compilations already planned, or it can be written as a whole and then tuned to fit a
particular system. The latter approach is feasible when you are unsure about the
necessity of using SEGMENTs or are quite sure that they will be used only rarely.
The former approach is preferred and is usually easier to accomplish, '

A typical plan fo.r the '0qn§trgction of a rela_tiv'ely large prq_'_gziam_ is shown below.
1. Design the program (user"an_d machine iﬁterfaces‘).‘
2. Determine needéd additions .to the library of utilities, including both beneral"'
and applied tools.
3. Write and debug utilities‘an‘d add them "to libFaries.‘
4. Write an‘;:l debug tﬁe pt;c;grém. |
5. Modify the program for beti:er performance.

During the design, you should try as much as possible to use existing procedures in
order to decrease coding time and increase reliability. This strategy can be assisted
by UNITs. To determine segmentation, consider the expected execution sequence and
_attempt to group routines inside SEGMENTs so that SEGMENT routines are. called as
infrequently as possible. : :

PASCAL COMPILER
Page 96

SEGMENTS AND LINKING

It is important that SEGMENT routines be independent and not call routines in
different segments, including non-SEGMENT routines. If they do, both segments
must be in memory at the same time, eliminating the advantage of segmentation.

While designing the program, also consider the logical (functional) grouping of
procedures into UNITs. Beside making the compilation of a large program possible,
this grouping can aid the program's conceptual design and therefore its testing.
UNITs can contain SEGMENT routines, so the two technigues can be cermbined.

Note that a UNIT occupies a segment of its own except possibly for any SEGMENT
routines it may contain. The UNIT's segment, like other code segments, remains
resident on diskette except when its routines are being called.

Steps 2 and 3 mentioned earlier let you save the new routines in a form which allows
them to be used in future programs. At this point the design should be reviewed (and
perhaps modified) in order to identify routines which might be useful in the future.
You may now want to make routines somewhat more general before putting them into
libraries.

It is usually good practice to program and test' these utilities before programming the
remainder of the program. Doing so helps to ensure that the procedures added to the
library have greater potential usefulness, since it helps you to avoid the tendency to
tailor them to the particular program being developed.

The INTERFACE part of 2 UNIT should be completed before the IMPLEMENTATION
part, especially if several programmers are working on the same project.

Tuning a program usually means-performance tuning. Since SEGMENTSs offer greater
memory space at reduced speed, performance may be improved by turning routines
into SEGMENT routines or by turning SEGMENT ‘routines back into normal .routines.

PASCAL COMPILER
Page 97

SEGMENTS AND LINKING

4.4 SEGMENTS

The declaration of a segment routine is no different from that of other routine
declarations (procedures, functions, and processes), except that it is preceded by the
reserved word SEGMENT.

The following is an example of a segment.

SEGQVENT PROCEDURE INITIALIZE;
.BEGIN _

{ Pascal code here. |
END;

Declaring a routine as a segment routine does not change the meaning of the Pascal
program, but does affect the time and space requirements of the program's execution.
The segment routine and all of its nested routines (except a nested routine that is
itself a segment routine) are grouped together in a code segment.

A program and its routines are all compiled as a single code segment except for
routines declared as SEGMENTs. Since a code segment is diskette resident until it is
used and since the space it occupies in memory may be overwritten when it stops,
declaring once- or little-used routines as SEGMENTs may improve a program's use of
main memory.

Up to 255 segments can be contained within a program. The "bodies" (that is, the
BEGIN-END blocks) of all segment routines must be declared before the bodies of all
non-segment routines within a given code segment. This applies to both segment
routines and main programs. If a segment routine calls a non-segment routine, the
non-segment routine must be forward-declared because its body cannot precede the
body of any segment routine (including its caller).

Any routine can be declared a SEGMENT, with the following restrictions.
e SEGMENT routines must be declared in the IMPLEMENTATION section.

e An EXTERNAL routine cannot be a SEGMENT routine.

PASCAL COMPILER
Page 98

SEGMENTS AND LINKING

The following program segment illustrates the use of segments.

PROGRAM GOLE;
SEGMENT ‘PROCEDURE STRENGAL

- BEGIN.
END; _ R _
PROCEDURE MYNDAL (FLAK: INTEGER); FORWARD; {MYNDAL is not a
: . SEGMENT routine, =~
and therefore must
be declared '
FORWARD. }

SEQVENT FUNCTION MDAD (PART,;WHOLE: REAL): INTEGER;

BEGIN
END;
PROCEDURE MYNDAL ;

PROCEDURE EARLY (I: WNREAL);

LN]

SEQVENT PROCEDURE LATE (J: IMAGINARY);

BEGIN { LATE CODE } S
{ Note that this can be a segment because it precedes

ail code bodies within the-enclosing code segment
(i.e., GOLE). } : :
END { LATE };
BEGIN { EARLY CODE }

END { EARLY 1}
BEGIN { MYNDAL CCDE }

END { MYNDAL };
BEGIN

EI\D{ GOLE }.

'PASCAL COMPILER
Page 99

SEGMENTS AND LINKING

4.5 UNITS

A UNIT is a group of interdependent procedures, functions, processes, and associated
data structures which are usually related to a common area of application. Whenever
‘a UNIT is needed within a program, the program declares it in a USES statement. A
UNIT consists of two main parts: an INTERFACE part which declares constants,
types, variables, procedures, functions, and processes that are public and can be used
by the host program or other UNIT, and an IMPLEMENTATION part which declares
labels, constants, types, variables, procedures, functions, and processes that are
private, i.e., not available to the host and used only within the UNIT. The
INTERFACE part declares how the program communicates with the user of the UNIT,
while the IMPLEMENTATION part defines how the UNIT accomplishes its task.

The Texas Instruments UNITs for the TI Home Computer are SUPPORT, RANDOM,
MISC, SOUND, BEEP, SPRITE, and SPEECH. Their use is described in Section 6.

The syntax of a UNIT can be outlined as follows.

INIT <unit identifier>;
INTERFACE
USES <unit identifier list>;
{constant definitions>;
{type defiriitions>;
<variable declarations>;
<routine headings>;
IMPLEMENTATION
USES <unit identifier list>;
{label declarations>;
{constant definitions>;
{type definitions>;
{variable declarations>;
{routine declarations>;
[BEGIN
{initialization statements>

* XK .
]

{termination statements>]
END.

~PASCAL COMPILER
Page 100

SEGMENTS AND LINKING

The INTERFACE part can only contain routine headings (no bodies). The bodies of
routines declared in the INTERFACE part are defined in the IMPLEMENTATION
part, much as FORWARD procedures are defined apart from their original declaration.

An INTERFACE part is terminated by the reserved word IMPLEMENTATION. An
INTERFACE part cannot contain $Include files (see Section 7). However, an
INTERFACE part can be contained within a $Include file, provided that-all of the
INTERFACE is in the $include file; i.e., an INTERFACE part cannot cross a $Include
file boundary. IMPLEMENTATION terminates an INTERFACE part, so if an
INTERFACE part is contained in a $Include file, the $Include file must contain both
the reserved words INTERFACE and IMPLEMENTATION. '

The following are not legal forms of a UNIT.

UNIT GOLEL; UNIT GOLE2;
INTERFACE {$1 INTER_PART}
{$1 INTER_DECS} " IMPLEMENTATION
IMPLEMENTATION -
v END;
END;

The following outline is a legal form of a UNIT.

UNIT GOLE3;
{$1 WHOLE UNIT}

»

4

The initialization statements and termination statements are optional sectiors of -

code. Initialization statements, if present, are performed before any of the code in
a host that USES the UNIT is executed; and termination statements, if present, are
performed after the host's code has terminated.

" Initialization statements are separated from termination statements by the line

mex#:1 The section of initialization statements, the section of termination
statements, or both, can be empty.

'PASCAL COMPILER
“Page 101

- SEGMENTS AND LINKING

The following are all legal code bodies of a UNIT: -
END {:Thére is no initialization or termination code. };

BEGIN : _
{ This is initialization .code. }
INIT_ARRAYS ; -
FLAG := FALSE;

COUNT := 23;

CxxES o :

{ This is terminatinn code. }

SEMINIT (LIGHT, 0);
END { UNIT };

BEGIN

kak o
¥

{ This is all termination code::]
INIT_ARRAYS ;
FLAG := FALSE;
CCOUNT := 23;
SEMINIT (LIGHT, 0)
END { UINIT };

BEGIN
{ This is ail initialization code. }
INIT_ARRAYS ;
FLAG := FALSE;
COUNT 1= 23;
SEMINIT (LIGHT, 0)
END { UNIT }; ‘

The statement part of a UNIT should not contain GOTO statements which branch
around the "#%¥%:" gseparator. The effect of executing such statements is not fully
predictable. ' o

-~ PASCAL COMPILER
Page 102

SEGMENTS AND LINKING

A UNIT's statement part can contain statements of the form EXIT(PROGRAM) but
EXIT(<unitname>) is not allowed. An EXIT(PROGRAM) in the initialization code has
the effect of skipping the remainder of the initialization code (if any) and the host's
code; execution then proceeds with the UNIT's termination section. An
EXIT(PROGRAM) in the termination code skips the remainder of the termination
code. There may be termination code from other hosts still waiting to execute; the
EXIT does not stop the execution of these other termination sections.

To use one or more UNITs, a program must name them in a USES declaration
immediately following the program heading. Upon encountering a USES declaration,
the Compiler refers to the INTERFACE part of the UNIT as though it were part of
the host text itself. Therefore, all identifiers declared in the INTERFACE part are
global. Name conflicts may arise if the host defines an identifier already defined in
the UNIT.

A UNIT can refer to (USE) anaother UNIT. Then the USES declaration may appear at
the beginning of either the INTERFACE part or the IMPLEMENTATION part. Since
references to a UNIT can be nested, if they appear in the INTERFACE part, the
ordering of the reference is important. For example, if UNITA refers to UNITB, the
declaration USES UNITB must appear before the declaration USES UNITA. '

The three programs on the next page illustrate the use of UNITs, assuming
*JSERLIB.TEXT contains A and B.

‘PASCAL COMPILER
Page 103

SEGMENTS AND LINKING

PROCGRAM HOST ; o , [Host Program File. }
USES {$U B.CODE} UNITB, :
{$U A.CODE} WNITA;
BEGIN :
PROCA;
END.

UNIT UNITA; { UNITA Program File. }
INTERFACE : .
USES {$U B.CODE} UNITB;
PROCEDURE PROCA;
IMPLEMENTAT [ON
PROCEDURE PROCA;
BEGIN
WRITELN('PROC A');
WRITE('CALLING PROC B - ')
PROCB
END;
END.

UNIT UNITB; { UNITB Program File. }
INTERFACE b ' o
PROCEDURE PROCB;
IMPLEMENTAT ION
PROCEDURE PROCB;
BEGIN
- WRITELN('PROC B');
END;
BEGIN
* %% 3
WRITELN(' TERMINATION CODE' };
END.

Routines declared in the INTERFACE part must not be SEGMENT routines, but
SEGMENT routines can be declared in the IMPLEMENTATION part. Declaring
SEGMENTSs within UNITs is subject to the same ordering as within a main program;
see Section 4.2.

For purposes of listing a program, the Compiler treats an INTERFACE section as an
include level. Thus, $Include file nesting is restricted within the scope of a USES
declaration.

PASCAL. COMPILER
Page 104

SEGMENTS AND LINKING

The System compiles a Pascal program, a single UNIT, or a string of UNITs separated
by semicolons. Your program can define a UNIT in-line, but an in-line UNIT
definition must appear between the program heading and. the <black>. If a UNIT and
program are in the same source file and you make changes to either the program or
the UNIT, then the source file must be recompiled. If the program and UNIT are in
different files and you change the INTERFACE part of the UNIT, then both files
must be recompiled. ‘

UNITs need not be explicitly linked together. At compile time a USEd UNIT's
INTERFACE part must be referenced by the Compiler. If the UNIT's source is in
the host program's source, or if the UNIT's code is in *SYSTEM.LIBRARY, nothing
more needs to be specified. If the UNIT's code resides in a different file (a "user
library"), the $U Compiler directive must be used to specify which file (see Section
7).

At run time, the code (all code, in fact) must be in either the user program,
*5YSTEM.LIBRARY, a user library, or the Operating System. If a unit is in a user
library, the name of the library file must appear in a "library text file." To find a
UNIT's code, the System searches first the files named in a library text file, in order,
and then searches *SYSTEM.LIBRARY. If no library text file is present, the System
only searches *SYSTEM.LIBRARY. The default library text file is called
*UJSERLIB.TEXT. This default can be changed by an execution option (see Section
7.

The following might be the contents of a library text file.

FUN: ADVENT.LIB
curve

tg: graphics
PLAY

For each UNIT encountered in the host, the System searches first ADVENT.LIB
(which must reside on the volume FUN:), then CURVE.CODE (which must reside on
the default volume), and so forth. Failing to find a UNIT in these four files, the
System searches *SYSTEML.LIBRARY.

PASCAL COMPILER
Page 105

SEGMENTS AND LINKING

As indicated in the example, specifying the .CODE suffix to a file name is optional in
the library text file's list.

The name *SYSTEM. LIBRARY can be included in a hbrary text file. If this is the -
case, it is searched in order, as it appears. -

Chahges in a host program require that you recompile the program. Changes in the
IMPLEMENTATION part of a UNIT require you to recompile the UNIT. Changes in
the INTERFACE part of a UNIT require that you recompile both the UNIT and all-
hosts that USE that UNIT. '

External linkages involving assembled routines are discussed in the UCSD p-System
Linker manual and in Section 4.6.

PASCAL COMPILER
"Page 106

.SEGMENTS AND LINKING

4.6 THE LINKER

The Linker is a System program (accessed by the L(ink command at the System level)
which allows EXTERNAL code to be iinked with a Pascal program, EXTERNAL
routines are procedures, functions, or processes that are written in TMS9900 assembly
language and conform to the System's calling and parameter-passing protocols. They
are declared EXTERNAL in the host program and must be linked before the program
is run. The Linker can also be used to link together separately assembled pieces of a
single assembly program. See the UCSD p-System Linker manual.

~PASCAL COMPILER
. . Page 107

SEGMENTS AND LINKING

4.7 THE UTILITY LIBRARY

LIBRARY.CODE is a utility program that allows you to group separate compilations
(UNITs or programs) and separately assembled routines into a single file. It is
discussed in the UCSD p-System Utilities manual.

-~ PASCAL COMPILER
Page 108

SECTION 5: CONCURRENT PROCESSES

This version of Pascal allows you to declare and initiate concurrent proecesses. A
concurrent process is a procedure whose execution appears to proceed at the same
time as the main program. Processes are declared like procedures and are set into
action by the intrinsic START. More than one process can run at once, and the same
process can be STARTed several times.

On the TI Home Computer, the System shares the processor among various Pascal
processes. This switching may lead to an overall increase in program execution time.
Processes are nonetheless useful in a variety of applications.

This implementation of UCSD Pascal does not permit interrupts to cause processes to
be initialized. All events which cause the start or termination of a process must be
caused by the program. '

PASCAL COMPILER
Page 109

CONCURRENT PROCESSES

5.1 PROCESSES

A process is declared exactly as a procedure is, with the reserved word PROCESS
replacing the reserved word PROCEDURE. '

The: following program. segments. illustrate the use of PROCESSes.

PROCESS ZIP;
BEGIN

END;

PROCESS DINNER (var SPLIT,BLACKEYED: peas);
begin .

end;

A process is started by the intrinsic START. The principal parameter passed to
START is a call to a process, for example, START(ZIP) ar START(DINNER(7,234)).

In the following example, program DUFFER starts process RED four times and
process BLUE once. Each of the five processes runs to completion, as does the main
program, and the processor shares time ameng them. Note that the four invocations
of RED result in four different versions of RED being started, each with different
parameter values.

PROCGRAM DUFFER;
var PID: processid;
1,J: integer;
PROCESS BLUE;
begin
end;
PROCESS RED (X, Y: integer);
begin
end;
begin
start (BLUE);
I = 200;
J 1= 300;

PASCAL COMPILER
Page. 110

‘CONCURRENT PROCESSES

start (RED(I, J));

start (RED(3, 4), PID);

start (RED(5, 5), PID, 300);
start (RED(J, 1), PID, I+J, 10);

end.

In addition to the principal parameter, START may have three optional parameters.
Each invocation of a process is assigned an internal PROCESSID, which is a
predeclared type. You can learn what PROCESSID has been assigned a given process
invocation by using the second parameter. Thus, in START(RED(3,4), PID); the
variable PID is set to a new PROCESSID value. PROCESSIDs are chiefly for the use
of the System and system programmers.

The third parameter to START, if present, can be the stacksize parameter. It
determines how much memory space is allocated to the process invocation. The
default is 200 words.

The fourth parameter to START, if present, can be a priority value. This determines
the proportion of processor time that the process receives before it is completed.
The priorities assigned to processes are used by the System to decide which active
process gets to use the available processor. Higher priority processes are given the
processer more often than lower priority processes. If no priority value is given in
START, the new process inherits the priority value of its caller. Priorities range
from 0 through 255, with 255 being the highest (most urgent) priority. The default
priority is 127. ' :

See START in Section 3.31 for more details.

PASCAL COMPILER
Page 111

CONCURRENT PROCESSES

5.2 SEMAPHORES

The name "semaphore" was coined by E.W. Dijkstra as an analogy to a railroad traffic
signal. The railroad semaphore controls whether or not a train can enter the next
section of track. A train passing the semaphore when it is green automatically
switches it to red, preventing further trains from entering that section of track until
the first train has left, at which time the semaphore is switched to green again.

Semaphores can be used for mutual exclusion problems, i.e, controlling access to
"eritical sections" of code and synchronizing "cocoperating processes. A common
application employing both of -these capabilities is resource allocation, discussed

below.

Semaphores can be divided into two classes: Boolean and counting semaphores. A
semaphore which has only two states (for exémple, stop and go) is a Boolean
semaphore. If more than two states are allowed, a semaphore is a counting
semaphore. In this version of Pascal, counting semaphores can span. the range 0
through 32,767. The zero is analogous to the stop value. It is possible to use
counting semaphores as Boolean semaphores if they are restricted to the values 0 and
1.

Given a set of concurrent processes and a single semaphore variable which they test,
we can imagine that each process {(or "train") is running on a private processor
("track") with separate indicators of the semaphore value under some central control.
For example, there might be a section of track which must be shared: by all the
trains, but only a single train is to be allowed in that section at a time. When the
value of the semaphore is zero, the central control causes any trains that approach
the semaphore to stop and wait until they are individually signalled to proceed.
When the central control determines that it is safe for a train to continue (i.e., no
train is on the common section of track), it selects one of the trains waiting and

signals it to go on.

The intrinsics which manipulate semaphores - in this version of Pascal are SEMINIT,
SIGNAL, and WAIT, described in Sections 3.28, 3.29, and 3.43.

SEMINIT initializes a semaphore by assigning it a count and an empty queue. All
semaphores must be initialized by SEMINIT, or their values and the results of the
program are unpredictable.

PASCAL COMPILER
Page 112

CONCURRENT PROCESSES

WAIT causes a process to wait for a given semaphore, and SIGNAL informs the
Systern that a semaphore is again available.

The use of these intrinsics is demonstrated in examples in the rest of this section.
5.2.1 Mutual Excmsion

When concurrent processes must share resources, it may be essential for only one
process Lo access a particular resource at a given time. This is known as "mutual
exclusion" and can be achieved by allowing the resource to be accessed only in
toritical sections® of code to which the mutual exclusion criteria are applied.

Suppose, for example, that two processes must both display information on the screen
and request input from the operator, but only one process may be allowed to do so at
a time. These two processes must practice mutual exclusion with respect to the
screen.

Critical sections can be implemented using Boolsan semaphores by enclosing the
critical section between WAIT(sem) and SIGNAL(sem). The semaphore should be
initialized to 1.

The following program illustrates the use of semaphores to perform mutual exclusion.

Initialize: SEMINIT(bridge_empty, 1}s
Critical Section:
Procedure CROSSBRIDGE;
begin
WAIT(bridge_empty};
... { Critical section of code. }
SIGNAL(bridge _empty};
end { CROSSBRIDGE };

In this example, processes (Mtrains") seeking to use the critical section (to cross a
bridge that holds only one train at a time) call CROSSBRIDGE, which takes care of
mutual exclusion internally via the global semaphore bridge_empty.

'PASCAL COMPILER
Page 113

CONCURRENT ‘PROCESSES

5.2.2 Synchronization

When concurrent processes are cooperating, you may want one process to wait at a
certain point in its execution until another process has caused some event to oceur,
such as filling a buffer. A counting semaphore can be used as an "eventname" in this
case. In the following example, two distinct "events" (the filling and emptying of a
buffer) are used to synchronize two concurrent processes.

The following program illustrates synchronization.

PROGRAM BUFF ;
const N = { Number of available buffers. };
var buff_full, buff_avail: semaphore;
PROCESS FILL_BUFFER;
begin
repeat
wait(buff_avail);
... { Select and fill a buffer. }
signal (buff_full)
until false;:
end;
© PROCESS SEND _BUFFER;
begin
repeat
wait(buff_ full);
... { Select and send a buffer. }
signal (buff_avail)
until false;
end;
begin { BUFF }
seminit(buff_full, 0);
seminit(buff_avail, N);
start (FILL_BUFFER);
start (SEND BUFFER);

end.

PASCAL COMPILER
Page 114

CONCURRENT PROCESSES

5.3 OTHER FEATURES

As noted above, there is a predefined type PROCESSID. A value of type
PROCESSID can be returned upon the invocation of a process. In the present
implementation, PROCESSIDs are not considered a user-oriented feature, but are used
for Operating.System work. Variables of type PROCESSID can be used in expressions
in the same way as pointer variables (that is, only the operators <>, =, and := are -
legal).

All processes must be declared at the outer (global) block of a prograrm. They cannot
be declared within a procedure or another process. Process initiation must oceur in
the principal task of a program. That is, a process cannot be started from any of a
program's subsidiary processes. '

Users interested in using processes at a fairly low level, especially using them in
conjunction with the System's facilities for memory management and Heap control,
should refer to the Internal Architecture Guide for further details.

PASCAL COMPILER
. Page 115

SECTION 6: TEXAS INSTRUMENTS UNITS

The Texas Instruments Home Computer has many capabilities that are not avallable
with standard Pascal statéments. " However, UNITs have been written to give you
access to these capabilities through Pascal The UNITs are contained in
SYSTEM.LIBRARY. '

For sprites (moving graphics) and sounds, the UNITs allow you to set up a complex
sequence of instructions that are performed concurrently with program execution.
This concurrency lets you present complex visual and auditory displays at the same
time that the computer ‘is accepting input and processing information, which is useful
especially for educational and recreational applications.:

The UNITs are SUPPORT, RANDOM, MISC, SOUND, BEEP, SPRITE, and SPEECH.

e SUPPORT allows you to set character colors, screen colors, and patterns; '
obtain character patterns; turn the screen off; read the Wired Remote
Controller's position; and set the screen display mode (pattern, multi-color, or
text).

e RANDOM provides for generation of pseudo-random numbers.

e MISC lets you determine the values in strings and change strings to all
upper-case letters.

® SOUND can be used to create a broad spectrum of notes and noises and
coordinate those sounds with the rest of your program.

e BEEP is a subset of the procedures in the UNIT SOUND. It allows you to use
sounds without using as much memory as the UNIT SOUND does.

® SPRITE permits you to create and deiete sprites (moving graphics), adjust their
size and speed, and determine when they are coincident.

¢ SPEECH allows you to use speech when a Speech Synthesizer, sold separately,
is attached to the console.

To access the functions and procedures within the UNITs, include a statement in your
program which consists of USES followed by the name of the UNIT used by the
program. This section contains descriptions of the UNITs.

"PASCAL COMPILER
Page 116

- JEXAS INSTRUMENTS UNITS

6.1 SUPPORT PROCEDURES AND FUNCTIONS

The UNIT SUPPORT allows you to set character colors, screen colors, and patterns;
obtain character patterns; turn the screen off; read the Wired Remote Controller's
position; and set the screen display mode (pattern, multi-color, or text). To access
these procedures and functions, include USES SUPPORT; in your program.

The procedures and functions included in SUPPORT are listed below.

Section Name Description

6.1.1 CHR_DEFAULT Sets the characters to their defauit defmltlons.
6.1.2 SET PATTERN Sets the pattern of a character.
6.1.3 GET PATTERN Returns the pattern of a character.
6.1.4 SET CHR COLOR Sets the foreground and background colors of a
‘ character.
6.1.5 SET_SCREEN Sets the screen mode.
6.1.6 SET SCR_COI.OR Sets the screen color.
6.1.7 JOyY Returns the location of a Wired Remote Controller's
lever.

6.1.1 CHR_DEFAULT
CHR_DEFAULT is a procedure with the form

OR_DEFAULT;
CHR_DEFAULT resets the character definitions for characters 0 through 255 to their
standard representation. For example, if a character has been defined as a sprite
pattern, then calling the procedure CHR_DEFAULT changes the sprite's appearance to
the standard definition of that character. Characters 32 through 126 are the ASCII
character set associated with the keyboard. See the Appendix, Section 8.10.
6.1.2 SET_PATTERN
SET PATTERN is a procedure with the form

SET_PATTERN (CHARACTER_NUMBER: INTEGER, PATTERN_STRING: STRING) ;
SET PATTERN allows you to define special graphics characters. You can redefine

any of the standard group of characters (ASCII characters 0 through 127) or the other
characters (ASCII characters 128 through 255).

PASCAL COMPILER
Page 117

TEXAS INSTRUMENTS UNITS

CHARACTER_NUMBER is an integer from O through 255 that indicates the character
ta be defined. PATTERN STRING is a string up to 16 characters long which
specifies the pattern of the character you are defining. This string is a coded
representation of the design which makes up a character displayed on the sereen.

The design is made of pixels or dots, which are the smallest units on the screen that
can be turned on and off. The display screen is 256 pixels wide and 192 pixels high.

Characters are defined by turning some pixéls "on" and leaving others "off." The
space character (ASCII character 32) is a character with all the pixels turned "off."
Turning all the pixels "on" produces a solid block. All the standard characters are
set with the appropriate pixels on, -

Each character is made up of 64 pixels comprising an 8-by-8 grid as shown below.
RIGHT

BLOCKS
I

ROW

ROW

ROW
ROW
ROwW

|
||
Ll
N
||
||
||
||

D~ BN

| |
P
||
| 1
|
||
||

Each row is divided into two blocks of four pixels sach.

LEFT RIGHT
BLOCKS BLOCKS

PASCAL COMPILER
Page 118

TEXAS INSTRUMENTS UNITS

Each character in PATTERN STRING describes the pattern in one block of one row.
The rows are defined from left to right and from top to bottom. Therefore, the first
two characters in PATTERN STRING describe the pattern for row one of the grid,
the next two the second row, and so on.

To create a new character, specify which pixels to turn on and which to leave off.
The code used in PATTERN_STRING is the hexadecimal representation of a bit
(binary digit) code. The following table shows all the possible on/off conditions for
the four pixels in a given block and the binary and hexadecimal codes for each
condition.

Binary Code Hexadecimal
BLOCKS (0=0ff; 1=0On) Code
) 0000 0
LI+l 0001 1
| Al B 0010 2
L f*l*] Dol11l 3
Li*p 41 0100 4
Il B 0101 5
0l 2 T 0110 6
| j*i*l*| 0111 7
f*E 1000 8
b*l | 1% ' 1001 9
[*1 J*) | 1010 A
[*] _1*]*] 1011 B
il Rl I 1100 C
1*i*l 1*] - 1101 D
il Bl B 1110 E
f*] x| 1111 F

If the PATTERN STRING is less than 16 characters, the computer assumes that the
remaining characters are zeros.

PASCAL COMPILER
Page 119

TEXAS INSTRUMENTS UNITS

For example, the PATTERN_STRING "1898FF3D3C3CE404" describes the pattern -
shown below. AR

LEFT RIGHT BLOCK

BLOCKS BLOCKS - CODES -
S ROW 1 o . e O P 18
“ROW 2 Tl O Tl Il O O T I 98
ROW 3 Nl Al Bl Nl B B S £ - FF -
ROW 4 b o I*i**I*] [*] 3D
ROW 5 | | I*I*i*j*] | | 3C
ROW 6 | L I*i*b*l* | | 3C
ROW 7 2 hd i I T E4
ROW 8 | |

O T R I I .04

" PASCAL COMPILER
Page 120

TEXAS INSTRUMENTS UNITS

The following program uses this and one other character to make a figure "dance."

program dance;
tises support;
const a = '1898FF3D3C3CE404";
b = '1819FFBC3C3C2320';

var c: integer;
procedure delay(time: integer);
‘ ‘bagin

repeat

time := time-1

until time<1l

end; o .
begin { Main program. }
page(output); | Clear screen. }

set_screen(2);
set_chr_color(96,1,7);
gotoxy{(15,11); o - . :
write(echr(96)); { Put the character on the screen. }
for c:=1 to 100 do
begin _
set_pattern(96,a); .
delay(1000); _”
set pattern(96,b);
delay (1000}
end;
end.

6.1.3 GET PATTERN
GET_PATTERN is a procedure with t_he form

GET PATTERN (CHARACTER NUVBER: INTEGER; VAR PATTERN
STRING: STRING) ;

GET PATTERN returns in PATTERN_STRING a string that specifies, in hexadecimal
notation, the pattern defined for the character specified by the integer
CHARACTER NUMBER. The hexadecimal notation used is the same as that
described in the procedure SET PATTERN, Section 6.1.2. :

PASCAL COMPILER
Page 171

TEXAS INSTRUMENTS UNITS

6.1.4 SET_CHR COLOR
SET_CHR_COLOR is a procedure with the form

SET_CHR_COLOR {CHARACTER_NUMBER , FOCREGROUND_OOLOR , BACKGROUND
COLOR ¢ INTEGER) 3

SET_CHR_COLOR sets the colors of characters. The colors for all of the characters
in a character set are set by specifying the color for any character within that set.
Character sets consist of eight consecutive characters.

Character Sets

0-7 8-15 16-23 24-31 32-39 40-47 48-55 56-63
64-71 72-79 80-87 88-95 96-103 104-111 112-119 120-127
128-135 136-143 144-151 152-159 160-167 168-175 176-183 184-191
192-199 200-207 2108-215 216-223 224-231 232-239 240.247 248-255

CHARACTER_NUMBER is an integér from 0 through 255 that indicates the character
that is to be used. FOREGROUND_COLOR sets the color of the pixels that are "on,"
and BACKGROUND_COLOR sets the color of the pixels that are "off."

FOREGROUND_COLOR and BACKGROUND _COLOR can be integers from 0 through
15 and correspond to the following colors.

Color Code Color Code
Transparent c Medium Red 8
Black 1 Light Red 9
Medium Green 2 Dark Yellow 10
Light Green 3 Light Yellow 11
Dark Blue 4 Dark Green 12
Light Blue 5 - Magenta 13
Dark Red 6 Gray 14
Cyan 7 White _ 15

SET_CHR_COLOR works properly only if the computer is in the pattern mode, which
is set by the SET_SCREEN procedure.

“PASCAL COMPILER
Page 122

TEXAS INSTRUMENTS UNITS

SET CHR_COLOR(44,6,4) sets characters 40 through 47 to have a FOREGROUND .
COLOR of dark red and a BACKGROUND_COLOR of dark blue.

6.1.5 SET_SCREEN
SET SCREEN is a procedure with the form
SET_SCREEN (SCREEN_MODE : INTEGER) 5

SET SCREEN sets the screen mode according to the value of SCREEN_MODE. If
SCREEN_MODE is 0, the screen is turned off. If SCREEN_MODE is 1, the display is
put in text mode. If SCREEN MODE is 2, the display. is put in pattern mode. If
SCREEN_MODE is 3, the display is put in muiticolor mode. :

When the screen is turned off, no text or graphics are displayed. The screen is the
color defined by BACKGROUND_COLOR in the SET_SCR_COLOR procedure.

Text mode allows the display of ASCII characters O through 255. The screen is 40
characters wide and 24 lines high. Each character is six by eight pixels. This is the
default mode of the computer when Pascal is running.

Pattern mode allows the use of calored characters and sprites. The screen is 32
characters wide and 24 lines high. Each character is eight by eight pixels.

Multicolor mode allows the use of colored boxes and sprites. The screen is divided
into 48 rows, each containing 64 "boxes" that are four by four pixels. Each of the
3072 boxes thus defined can be one of the 1é colors available.

PASCAL. COMPILER
Page 123

TEXAS INSTRUMENTS UNITS

6.1.6 SET SCR COLOR
SET_SCR_COLOR is a procedure with the form
SET_SCR_COLOR (FOREGROUND COLOR,BACKGROUND_ODLOR: INTEGER) ;

SET_SCR_COLOR sets the foreground and background colors of the screen. The
foreground color is the color of the text on the screen in text mode, and the
background color is the background color of the screen in text mode and the backdrop
color in pattern mode. '

- The colors produced by different values of FOREGROUND COLOR and
BACKGROUND _COLOR are given in SET_CHR_COLOR, Section 6.1.4, and in the
Appendix, Section 8.12.

6.1.7 JOY
JOY is a function with the form
Joy (STICK_NUM:INTEGER; VAR X,Y:INTEGER): BOOLEAN;
JOY returns the X- and Y-positions of the Wired Remote Controller specified by

STICK_NUM, and a Boolean value specifying whether the fire button has been
pressed.

A value of 0 or 1 in STICK NUM specifies which Wired Remote Controller is to be
read. '

An X value of 1 indicates that the Wired Remote Controller is to the right. A value
of 0 indicates that it is in the center. A value of -1 indicates that it is to the left.

~ A Y value of 1 indicates that the Wired Remote Controller is up. A value of O
indicates that it is in the center. A value of -1 indicates that it is down.

If the value of the function is returned as false, the fire button has not been pressed.
A true value indicates that the fire button has been pressed.

PASCAL COMPILER
Page 124

CTEXAS INSTRUMENTS UNITS

6.2 RANDOM NUMBERS

The UNIT RANDOM contains two procedures and twe functions to enable a program
to use random numbers. Random number use is initiated with the SET_RND or
RANDOMIZE procedures. Then random integers are obtained with the RND_INT
function and random real numbers are obtained with the RND_REAL function. To
access these procedures and functions, include USES RANDOM; in your program.

The procedures and functions included in RANDOM are listed below.

Section Name Description _

6.2.1 SET_RND Initializes the pseudo-random number generator.
6.2.2 RANDOMIZE Randomizes the pseudo-random number generator.
6.2.3 RND_INT Returns a random integer. |
6.2.4 RND_REAL Returns a random real number.

6.2.1 SET_RND
SET RND ‘is a procedure with the form
SET_RND (SEEDI,SEED2 :REAL) ;

SET_RND initializes the pseudo—ran.dom number generator, Differ.ent real values of
SEEDIL and SEED2 give different random number sequences.

6.2.2 RANDOMIZE
RANDOMIZE is a procedure with the form
RANDOMI ZE 4

RANDOMIZE initializes the pseudo-random number generator using seeds taken from
the system clock.

SET_RND is automatically executed when you include USES RANDOM; in your
program. Thus, each time you run your program the same series of pseudo-random
numbers is produced if you do not execute SET RND or RANDOMIZE.

PASCAL COMPILER
Page 125

TEXAS-INSTRUMENTS UNITS

6.2.3 RND_INT
RND_INT is_ a function with the form
RND_INT (MAXIMM_VALUE): INTEGER;
RND_INT returns an integer from 1 through MAXIMUM_VALUE. MAXIMUM
VALUE can be up to 32,767, so the function can never return a valu_e greater than
32,767. ' '
6.2.4 RND REAL
RND_REAL is a function with the form
RND_REAL: REAL;

RND_REAL. returns a random real number from 0 up to, but not including, 1.

The following function returns a random real number between any two values
previously specified for LOWER_LIMIT and UPPER_LIMIT.

function random(lower_limit,upper_limit: real):real;
begin '

random := (upper_limit-lower_limit)*(rnd_real)+lower_limit
end;

PASCAL COMPILER
Page 126

TEXAS INSTRUMENTS UNITS

6.3 STRINGS

The functions in the UNIT MISC give you additional string and character capabilities.
To access these procedures and functions, include USES MISC; in your program.

The procedures and functions included in MISC are listed below.

Section Name Description

6.3.1 BREAK Returns the position of the first character in a
string that matches a character in a given string.

6.3.2 SPAN Returns the position of the first character in a
string that does not match any character in a given
string.

6.3.3 UPPER_CASE Returns an upper-case copy of a string.

6.3.1 BREAK
BREAK is a function with the form
BREAK (SflRCE__STRING,BREAK_STR_ING:STRING): INTEGER;

BREAK compares SOURCE_STRING with BREAK_STRING and returns the position of
the first character in SOURCE_STRING that matches a character in BREAK_STRING.

If the statement
int := break(strl,str2);

is used with INT as an integer and STRl and STR2 as strings, the following results
occur,

- STR1 STRZ INT_ Explanation o
'abcdefgh! 'd' 4 'd' is the fourth character in STR1.
'abedefgh! 'dfg' 4 'd' is the fourth character in STR1.
‘abedefgh' 'dfb' 2 'v' is the second character in STR1.
'abedefgh! ‘s’ 1 'a' is the first character in 5TRIi.
‘abedefgh' X! 0 No match.

PASCAL COMPILER
Page 127

TEXAS INSTRUMENTS UNITS

6.3.2 SPAN
SPAN is a function with the form

SPAN (SOURCE_STRING, SPAN_STRING:STRING): INTEGER;
SPAN compares SOURCE_STRING with SPAN STRING and returns the position of the
first character in SOURCE_STRING which does not match any character in SPAN
STRING. '
If the statement

int := span(strl,str2);

is used with INT an integer and STR1 and STR2 strings, the following results occur.

STR1 STR2 INT Explanation
'‘abcdefgh! 'at 2 'n' is not in 'a'.
'abedefgh' ‘acb! 4 'd' is not in 'acb'.’
‘abedefgh' ' 1 'a' is not in 'b'.
" 'abcdefgh' '‘abedefgh’ o The entire 'string is included.

6.3.3 UPPER_CASE
UPPER_CASE is a procedure with the form
UPPER_CASE (SOURCE_STRING:STRING; VAR NEW_STRING:STRING) ;

UPPER_CASE returns the SOURCE_STRING in NEW_STRING with ali lower-case
letters changed to upper-case letters.

The following statement returns "THIS HAS A 6 IN IT." in the string variable NEWT.

UPPER_CASE('This has a 6 in it.',newt);

PASCAL COMPILER
Page 128

TEXAS INSTRUMENTS UNITS

6.4 SOUND PROCESSING

Sounds can be set up with the procedures and functions in the UNIT SOUND or UNIT
BEEP and run without further program control, enabling you to add sounds and
coordinate them with the display. This concurrency allows you to present complex
visual and auditory displays at the same time that the computer is accepting input
and processing information, which is useful especially for educational and recreational
applications. To access these procedures and functions, include USES SOUNDj; or
USES BEEP; in your program.

Sound production requires that you first reserve space in memory for the various
sound possiblities, next put commands and sounds in that space, and finally have the
computer perform the list of commands and sounds. The functions and procedures
described below allow you to create and delete sound lists, place sounds and
commands in sound lists, and find information about sound lists.

The procedures that are included in the UNIT SOUND but excluded from the UNIT
BEEP are as follows. ‘

CALL_SND ~ GOSUB_SND RETURN_SND JUMP_SND
CHAIN_SND CHN_SND_CHAIN READ SND_CHAIN WRITE_SND_LIST
READ_SND_LIST PLAY_ALL SND KILL_ALL SND SET_SND FLAG
READ SND FLAG SND _BEAT SND_LST OFFSET

The UNIT BEEP is useful for simple sound production. It is provided for use when
the advanced procedures and functions in the UNIT SOUND are not needed and when
memory space is a problem. You may use only UNIT SOUND or UNIT BEEP, but not
both. ‘

When you include USES SOUND; or USES BEEP; in your program, the following
declaration is included in your program as part of the unit.

type sndistptr = “sndistrec;
sndlstrec = record
listsize: integer;
curoffset: integer;
packet: packed array[0..1] of 0..255;
end;

PASCAL COMPILER
Page 129

TEXAS INSTRUMENTS UNITS

The procedures and functions included in SOUND and BEEP are listed below.

Description
Allocates memory space for a sound list. Included

in both units SOUND and BEEP.

Deletes a sound list. Included in both units
SOUND and BEEP. -

Sets the frequency and duration of a note.
Included in both units SOUND and BEEP.

Sets the frequency and duration of a tone.
Included in both units SOUND and BEEP.

Sets the duration and type of a white noise.
Included in both units SOUND and BEEP.

Sets the duration and type of a periodic noise.
Included in both units SOUND and BEEP.

Sets the volume of a sound list. Inciuded in both
units SOUND and BEEP.

Allows the use of sound lists as subroutines.
Included in unit SOUND only.

Transfers processing to another point in a sound
list. Included in unit SOUND only.

Returns processing from one point in a sound list
to another. Included in unit SOUND only.
Unconditionally transfers processing from one point
in & sound list to another. Included in unit
SOUND only.

Transfers processing from one sound list to
another. Included in unit SOUND only.

Changes the sound list to which processing is
transferred by CHAIN SND. Included in unit
SOUND only.

READ_SND_CHAIN Returns the sound list to which processing is

Section Name

6.4.1 MAKE_SND_LIST
6.4.2 DEL_SND LIST
6.4.3 SND_NOTE

6.4.4 SND_TONE

6.4.5 | WHITE_NOISE
6.4.6 PERIODIC_NOISE
6.4.7 SND_VOLUME
6.4.8 CALL_SND

6.4.9 GOSUB_SND
6.4.10 RETURN_SND
6.4.11 JUMP_SND

6.4.12 CHAIN_SND
6.4.13 CHN_SND_CHAIN
6.4.14

6.4.15 WRITE_SND_LIST
6.4.16 READ_SND_LIST
6.4.17 END_SND

transferred by CHAIN SND. Included in unit
SOUND only. _ .

Writes a sound list to a file. Included in unit
SOUND only. _ ‘

Reads a sound list from a file. Included in unit
SOUND only. : .

Ends a sound list. Included in both units SOUND
and BEEP.

PASCAL COMPILER

Page 130

TEXAS INSTRUMENTS UNITS

6.4.18 SET_SND Associates a sound list with a sound generator.

Included in both units SOUND and BEEP,
6.4.19 PLAY_SND Plays a sound list. Included in both units SOUND
_ and BEEP, 7 :
6.4.20 PLAY_ALL_SND Plays all sound lists. Included in unit SOUND
only. . : ,
6.4.21 KILL_SND Stops playing of a sound list. Included in both

: .. units SOUND and BEEP. ‘ '
6.4.22 KILL_ALL SND Stops playing of all sound lists. Included in unit
' © - SOUND only. S .
6.4.23 SET_SND_TEMPO Sets the tempo of a sound list. Included in both
units SOUND and BEEP.
6.4.24 SET_SND FLAG Sets a flag in a sound list. Included in unit
SOUND only. . : '
6.4.25 READ_SND FILAG Returns the number of the most recently
g L ' . encountered flag in a sound list. Included in Unit
SOUND only.
6.4.26 SND._BEAT : Returns the number of beats played since PLAY
ALL_SND or PLAY_SND was executed. . Included
S in unit SOUND. only. ' '
6.4.27 SND_LST_OFFSET Returns the number of bytes from the beginning of
a sound list to the current point of execution.
Included in unit SOUND only.

6.4.1 MAKE_SND_LIST
MAKE_SND LIST is a procedure with the form

MAKE_SI\D_LIST (VAR LIST_POINTER:SNDLSTPTR; SIZE: INTEGER) ;

MAKE _SND_LIST allocates memory space for a sound list. It is included in both
SOUND and BEEP.

LIST_POINTER is the SNDLSTPTR, indicating wherée the sound list is in memory.
SIZE is listsize, indicating the number of bytes to reserve for the sound routine.
Each of the commands in a sound list requires a certain number of bytes, as given in
the description of the procedure that puts the command in the sound list.

The follnwmg statement allocates a sound list of 200 bytes and returns a pointer to it
in voice one.

make_snd_list(voice_one,200);

PASCAL COMPILER
~-Page 131

TEXAS INSTRUMENTS UNITS

6.4.2 DEL SND LIST
DEL_SND _LIST is a procedure with the form

DEL SND LIST (VAR LIST_POINTER: SI\DLSTPTR)

DEL_SND_LIST deletes the sound list specified by LIST_POINTER, making the
memory it.-was using available for other applications. It is included in both SOUND
and BEEP. The value of LIST_POINTER is returned as nil.

6.4.3 SND NOTE

SND_NOTE is a procedure with the form.

SND_NOTE (LIST_POINTER:SNDLSTPTR; FREQUENCY ,DURAT ION: INTEGER) ;
SND_NOTE sets the FREQUENCY and DURATION for a note and adds the note to
the list specified by the value of LIST POINTER. It is inciuded in both SOUND and
BEEP. FREQUENCY is an integer from 110 to 16383 Hertz. See the Appendix in
Section B.11 for information on relating FREQUENCY to musical notes. '

The DURATION, in beats, is an integer from 1 to 16. A note sounds for
seven-eighths of DURATION and is silent for one-eighth of DURATION. LIST
POINTER must refer to a sound list created with MAKE_SND LIST.:

This procedure uses three bytes in the sound list.

The following statement adds an A below middle C (220 Hertz) with a duratlon of 4
beats (3-1/2 tone and 1/2 silence) to the sound list FIRST.

snd_note(first,220,4);

PASCAL COMPILER
Page 132

TEXAS INSTRUMENTS UNITS

6.4.4 SND_TONE
SND_TONE is a procedure with the form

SND_TONE (LIST_POINTER:SNDLSTPTR; FREQUENCY,DURATION: INTEGER) 3
SND _TONE sets FREQUENCY and DURATION for a note and adds the note to the
list specified by the value of LIST_POINTER. It is included in both SOUND and
BEEP. FREQUENCY is an integer from 110 to 16383 Hertz. See the Appendix in
Section 8.11 for information on relating FREQUENCY to musical notes. '
The DURATION, in beats, is an integer from 1 to 16, A tone lasts for the entire
DURATION specified, with no silence. LIST POINTER must refer to a sound list
created with MAKE_SND _LIST. : ' '

This procedure uses three bytes in the sound list.

The following statement adds an A below middie C (220 Hertz) with a duration of 4
beats to the sound list FIRST.

snd_tone(first,220,4)};
6.4.5 WHITE NOISE
WHITE_NOISE is a procedure with the form

WHITE_NOISE (LIST_POINTER:SNDLSTPTR; NOISE,DURATION: INTEGER);
WHITE_NOISE sets DURATION for a noise and adds the noise to the list specified by
the value of LIST POINTER. It is included in both SOWUND and BEEP. DURATION,
in beats, is an integer from 1 to 16. LIST POINTER must refer to a sound list
created with MAKE_SND_LIST.
Three different white noises are created from NOISE values of 0, 1, and 2. The white
noise created by a NOISE value of 3 depends on the value of tone generator number

3.

This procedure uses three bytes in the sound list.

PASCAL COMPILER
Page 133

TEXAS INSTRUMENTS UNITS

6.4.6 PERIODIC_NOISE
PERIODIC NOISE is a procedure with the form

PERIODIC_NOISE (LIST_POINTER:SNDLSTPTR; NOISE,DURATION:
INTEGER) ;

PERIODIC NOISE sets DURATION for a noise and adds the noise to the list specified
by the value of LIST POINTER. It is included in both SOUND and BEEP. '
DURATION, in beats, is an integer from 1 to 16. LIST POINTER must refer to a
sound list created with MAKE_SND_LIST.

Three different periodic noises are created from NOISE values of 0, 1, and 2. The
periodic noise created by a NOISE value of 3 depends on the value of tone generator
number 3.
This procedure uses three bytes in the sound list.
6.4.7 SND VOLUME
SND _VOLUME is a procedure with the form

SND_VOLUME (LIST_POINTER:SNDLSTPTR3 VOLUME: INTEGER) 3
SND_VOLUME adds a VOLUME setting as an integer from. 0 (softest) through 15
(loudest) to the sound list specified by LIST_POINTER. It is included in both SCUND
and BEEP. Of course, the volume setting on the monitor or television. also influences

the volume.

This procedure uses two bytes in the sound list.

PASCAL COMPILER
Page 134

TEXAS INSTRUMENTS UNITS

6.4.8 CALL_SND
CALL_SND is a procedure with the form
CALL_SND (LIST_POINTER,NEW_LIST_POINTER: SNDLSTPTR) ;

CALL_SND allows separate sound lists to be used as sound subroutines. It is included
in only SOUND. LIST_POINTER specifies the sound list into which the subroutine
call is to be placed. NEW_LIST_POINTER gives the new sound list that is to be

called. The entry point of NEW SOUND_LIST is the beginning of the list.
Processing in the new list proceeds until RETURN SND is encountered. Processing

then returns to the next command in the original iist.
This procedure uses three bytes in the sound list,

The foilowing shows two sound lists.

LIST1 LIST2

notela noteZa
notelb note2b
CALL _SND list2 note3b
notelc RETURN_SND

The notes are played in the following order when LIST1 is played.

notela
notelb
noteZa
noteZb
note3b
notele

PASCAL COMPILER
' Page 135

TEXAS INSTRUMENTS UNITS

6.4.9 GOSUB_SND
GOSUB_SND is a procedure with the form

GOSUB_SND (LIST_POINTER:SNDLSTPTR; OFFSET: INTEGER) ;
GOSUB_SND allows you to call a subroutine within a sound list. It is included in only
SOUND. LIST_POINTER specifies the list in which the command is to be placed.
CFFSET is an integer specifying where to transfer control, counting the bytes from
the beginning of the sound list. Execution continues at the new point until RETURN
SND is encountered. ‘

This procedure uses three bytes in the sound list.

The foliowing shows the possible makeup of a sound list.

ltem_ First byte
notel 0
GOSUB_SND 18 3
note2 6
GOSUB_SND 18 9
note3 12
JUMP_SND 28 15
note4 i8-
noteb 21
noteé 24
RETURN_SND 27
END_SND 28

The notes are played in the following order.

notel
noted
note>
noteb
note?2
noted
noteb
noteb
note3

PASCAL COMPILER
Page 136

TEXAS INSTRUMENTS UNITS

6.4.10 RETURN_SND
RETURN_SND is a procedure with the form

RETURN_SND (LIST_POINTER:SNDLSTPTR) ;
RETURN_SND returns processing to the statement following the CALL_SND or
GOSUB_SND by which it was called. It is included in only SOUND. The command is
added to the sound list specified by LIST POINTER.
This procedure uses one byte in the sound list.
See the example under GOSUB SND, Section 6.4.9.
6.4.11 JUMP_SND
JUMP_SND is a procedure with the form

JUMP_SND (LIST_POINTER:SNDLSTPTR; OFFSET: INTEGER) ;
JUMP_SND unconditionally transfers control to another point within a sound list. It
is included in only SOUND. LIST_POINTER specifies the list in which the command
is to be placed. OFFSET is an integer specifying where to transfer control, counting
the bytes from the beginning of the sound list. Execution continues at the new point.
This procedure uses three bytes in the sound list.
See the example under GOSUB_SND, Section 6.4.9.
6.4.12 CHAIN SND
CHAIN SND is a procedure with the form

CHAIN SND (LIST_POINTER,NEW L IST_POINTER: SI\DLSTPTR) H
CHAIN_SND transfers control from one sound list to another. It is included in only
SOUND. LIST_POINTER identifies the sound list into which the command is entered.
NEW_LIST POINTER specifies the sound list to which control is transferred. The .
new sound list ‘always runs from its beginning.
This procedure uses three bytes in the sound list.

PASCAL COMPILER
Page 137

TEXAS INSTRUMENTS UNITS

6.4.13 CHN SND CHAIN

CHN_SND_CHAIN is a procedure with the form

CHN_SND_CHAIN (LIST_POINTER:SNDLSTPTR; CHAIN_NUMBER: INTEGER;
NEW _LIST_POINTER:SNDLSTPTR);

CHN_SND _CHAIN changes the NEW_LIST_POINTER value previously placed in a
sound list by the CHAIN_SND procedure. It is included in only SOUND. LIST
POINTER identifies the sound list in which the value is to be changed. The integer
CHAIN NUMBER indicates which CHAIN _SND command is to be changed. NEW
LLIST POINTER specifies the new sound list.

Suppose sound LIST1 is as follows.

notel
note2
CHAIN_SND to list2

Then the statement

CHN_SND CHAIN(listl,l,1ist5);
changes LIST1 to

notel

note?

CHAIN_SND to list5
6.4.14 READ_SND CHAIN

READ_SND_CHAIN is a function with the form

. READ_SND_CHAIN (LIST_POINTER:SNDLSTPTR; CHAIN NUVBER: INTEGER) :
SNDLSTPTR;

READ_SND_CHAIN returns the list pointer which was set by CHAIN SND and possibly
reset by CHN_SND_CHAIN. It is included in only SOUND. LIST_POINTER
identifies the sound list from which the value is to be read. The integer CHAIN
NUMBER indicates which CHAIN_SND command is to be read.

PASCAL COMPILER
Page 138

TEXAS INSTRUMENTS UNITS

Suppose sound LIST1 is as follows.

notel

CHAIN _SND to list2
note?

CHAIN_SND to list3
note3 :
CHAIN_SND to list4

Then the statement

READ_SND CHAIN(listl,2);
returns a value of LIST3,
6.4.15 WRITE_SND_LIST
WRITE_SND_L.IST is a procedure with the form

WRITE_SND_LIST (LIST_POINTER:SNDLSTPTR; FILE NAVE:STRING) ;
WRITE_SND_LIST uses the pointer to a sound list in LIST_POINTER to designate the
sound list that is to be written to the file designated by FILE_NAME. It is included
in only-SOUND. This enables you to save sound lists on diskettes. '
6.4.16 READ SND LIST
READ_SND_LIST is a procedure with the form

READ_SND_LIST (VAR LIST_POINTER:SNDLSTPTR; FILE_NAVE :STRING) ;
READ_SND _LIST allocates space for a sound list in main memory, assigns a pointer to
the list in LIST_POINTER, and reads the sound list from the file designated by FILE
NAME. 1t is included in only SOUND. This enables you to read saved sound lists

from diskettes. This procedure automatically allocates space for a sound list and
returns the pointer to it in LIST_POINTER.

PASCAL COMPILER
Page 139

TEXAS INSTRUMENTS UNITS

6.4.17 END SND
END_SND is a procedure with the form

END_SND (LIST_POINTER:SNDLSTPTR)
END_SND provides the required:end of a sound list. It is included in both SOUND
and BEEP. LIST POINTER identifies the sound list to be ended. The END_SND
procedure adds a command to the end of the sound list specified.
This procedure uses one byte in the sound list.
6.4.18 SET SND
SET_SND is a procedure with the form

SET_SND (VOICE_NUMBER: INTEGER; LIST_POINTER:SNDLSTPTR);
SET_SND associates a specific sound list with a particular sound generator. It is
included in both SOUND and BEEP. VOICE NUMBER is an integer specifying which
of the four sound generators is to be used. VOICE NUMBERs of 1 through 3 can be
used for notes or tones. VOICE NUMBER 4 is for noises only.
LIST_POINTER specifies the sound list that is to be associated with the given sound
generator. Note that this procedure does not play a sound list. It only associates a
sound list with a particular sound generator.
6.4.19 PLAY_SND
PLAY_SND is a procedure with the form

- PLAY_SND (VOICE NULMBER: INTEGER) ;

PLAY_SND starts the processing of the sound generator specified by the integer

VOICE_NUMBER. It is included in both SOUND and BEEP. The sound generator
must have been previously associated with a list by the SET_SND procedure.

PASCAL COMPILER
Page 140

TEXAS INSTRUMENTS UNITS

6.4.20 PLAY ALL_SND
PLAY ALL _SND is a procedure with the form

PLAY ALL_SNDj;
PLAY ALL_SND starts the processing of all sound generators. [t is included in only
SOUND. The sound generators must have been previously associated with sound lists
by the SET_SND procedure. Any sound generators not associated with a sound list
remain silent.
6.4.21 KILL SND
KILL SND is a procedure with the form

KILL_SND {(VOICE_NUMBER: INTEGER) ;
KILL_SND stops the processing of the sound generator specified by the integer
VOICE NUMBER. It is included in both SOUND and BEEP. VOICE NUMBER must
be from 1 through 4.
6.4.22 KILL_ALL_SND
KILL_ALL SND is a procedure with the form

- KILL_ALL_SND;

KILL_ALL_SND stops the processing of all sound generators. It is included in only
SOUND.

6.4.23 SET _SND TEMPO
SET_SND_TEMPO is a procedure with the form
SET_SI\D_:_TEWO (VOICE ,DURAT ION: INTEGER)
SET_SND_TEMPO sets the duration of one beat lof sound for the specified VOICE. It
is included in both SOUND and BEEP. The integer DURATION specifies the number

of milliseconds, from 1 through 32,767, that a beat lasts. The number of beats that
a sound lasts is set by the SND_NOTE or SND _TONE procedure.

-PASCAL COMPILER
Page 141

TEXAS INSTRUMENTS UNITS

The time is processed every sixtieth of a second, or about every 16.7 milliseconds.
The most accurate values, therefore, are in multiples of 16.7 milliseconds. For
music, a good starting value is approximately 300 milliseconds. ;

Sound effects are best determined by trial-and-error. They often depend on short
intervals and rapid frequency changes.

This procedure uses one byte in the sound list.
6.4.24 SET_SND_FLAG
SET_SND_FLAG is a procedure with the form

SET__SI\D__FLAG (LIST_POINTER:SNDLSTPTR; FLAG_NUMBER: INTEGER) ;
With SET_SND FLAG, you can set up to 15 "flags" in a sound list. It is included in
only SOUND. These flags can be used during program execution to synchronize the
sound with the rest of the program. LIST_POINTER identifies the sound list into
which the command is entered. FLAG_NUMBER is an integer from 1 through 15. .

When a flag is encountered during sound list processing, FLAG NUMBER is recorded
and can be accessed with the READ_SND_FLAG function. :

This procedure uses one byte in the sound list.
6.4.25 READ_SND FLAG
READ_SND FLAG is a function with the form

READ _SND_FLAG (VOICE_NUVBER: INTEGER): INTEGER;
READ_SND_FLAG returns the number of the most recently encountered flag in the
sound list associated with the integer VOICE_NUMBER. It is included in only
SOUND. VOICE_NUMBER must be from 1 through 4 and must have been associated
with & sound generator with the SET_SND procedure. The sound flags are initialized

to zero when USES SOUND; is included in your program, so & value of zero is
returned if no flag has been encountered.

PASCAL COMPILER
Page 142

TEXAS INSTRUMENTS UNITS

6.4.26 SND BEAT
SND_BEAT is a function with the form

SND_BEAT (VOICE:INTEGER): INTEGER;
SND_BEAT returns an integer equal to the number of beats played by the sound list
specified in VOICE since the PLAY_SND ar PLAY ALL_SND procedure was executed.
SND_BEAT is included in only SOUND. The value returned is from 0 through 32,767.
If a value in excess of 32,767 occurs, 32,767 is returned.
The amount of time, in milliseconds, that has passed is equal to the value returned by
the SND_BEAT function multiplied by the length of a beat, for this voice, as set by
the SET_SND_TEMPQO procedure, Section 6.4.23. :

The foliowing is an example of the SND BEAT function.

repeat { Do nothing. }
until SND_BEAT(1)>247; { Wait for music to catch up. }

6.4.27 SND LST_OFFSET
SND_LST_OFFSET is a function with the form

SND_LST_OFFSET (LIST_POINTER:SNDLSTPTR): INTEGER;
SND_LST_OFFSET returns an integer which indicates the number of bytes from the
beginning of the sound list specified by LIST_POINTER to the current point of
execution. It is included in only SOUND. If LIST_POINTER does not point to an

active sound list, a value of zero is returned.

Suppose sound LIST1 consists of the following. Then when the sound list is processed
and note2 is being played, the function SND_LST_OFFSET (listl) returns a value of 8.

Values First Byte Byte Length
SND__VOLUME] 2
notel 3 3
note2 6 3
SET_SND_FLAG 9 1
note3 10 3

PASCAL COMPILER
Page 143

TEXAS INSTRUMENTS UNITS

6.5 SPRITE HANDLING

Sprites are graphics which have color and can be located anywhere on the screen.
They can be set in motion in any direction at a variety of speeds and continue their
motion until it is changed by the program. They move more smoothly than the usual
character which jumps from one screen position to another. To access these
procedures and functions, include USES SPRITE; in your program.

You can define up to 32 sprites, numbered 0 through 31, with a SPRITE CHANGE
LIST, which is a packed record defined as follows.

type ‘
- link = “sprite_change_list;
sprite_change_list = packed record

packet: set of (spr_pattern,spr
color,spr_clock,spr_y
pos,spr_x_pos,spr_y vel,spr
x_vel);

pattern_number: integer;

color: integer;

clock: integer;

y_pos: integer;

X_pos: integer;

y_vel: integer;

Xx_vel: integer;

countdown: integer;

link: “sprite change list;

: auto_dispose: boolean;
end { sprite _change list };

Sprites are created and controlled by defmmg and accessing the values in the
SPRITE_CHANGE_LIST.

The following describes the meanings of the variables in SPRITE_CHANGE_LIST.

e PACKET--A set which indicates the valid fields within the SPRITE_CHANGE
LIST. This allows you to modify selected fields. For instance, the statement

scll.packet := [spr_pattern,spr_colorl;

sets a list to alter only the pattern and color of a sprite.

PASCAL COMPILER
Page 144

s

TEXAS INSTRUMENTS UNITS

PATTERN _NUMBER--The pattern which defines the sprite. It is an integer
fram 0 through 255 and refers to an ASCII character. The pattern can be
defined with the SET_PATTERN procedure in UNIT SUPPORT (see Section
6.1.2). :

COLOR--The color of the pixels that are "on" in the sprite's pattern. It is an
integer from O through 15. The colors are as described in the SET_CHR
COLOR procedure in Section 6.1.4. The pixels that are "off" are always
transparent. -

CLOCK--The side of the sprite which controls its position. The integer O
means that the sprite's upper left-hand corner is the specified position. The
integer 1 means that the sprite is moved 3Z pixels to the left of the specified
position. This allows you to control whether the sprite moves off the screen
smoothly on the right (a CLOCK value of 0) or the left (a CLOCK value of 1).

Y_POS--The vertical (y) position of the sprite. The y-position is an integer
from O (the top of the screen) through 191 (the bottom of the screen). When,
because of its motion, the y-position of a sprite would equal 192, it
automatically changes to 0. Similarly, when the y-position would be -1, it
automatically changes to 191. Values can also be given from 192 to 255,
hiding the sprite below the botfiom of the screen. A value of 208 causes the
sprite in that row and any higher numbered sprites to disappear until the sprite
moves to another position.

X P0OS--The horizontal (x) pus.ition of the sprite. The x-position is an integer
from 0 (the left side of the screen) through 255 (the right side of the screen).
When, because of its motion, the x-position of a sprite would equal 256, it

" automatically changes to 0. Similarly, when the x-position would be -1, it

automatically changes to 255.

Y_VEL--The vertical (y) velocity of the sprite. The y-velocity is an integer
from -128 (a fast upward movement) through 127 (a fast downward movement).
The y-position is updated by Y _VEL/32 pixels every sixtieth of a second. A Y
VEL of 0 indicates no vertical motion.

X_VEL--The horizontal (x) velocity of the sprite. The x-velocity is an integer
from -128 {(a fast leftward movement) through 127 (a fast rightward
movement). The x-position is updated by X VEL/32 pixels every sixtieth of a
second. An X_VEL of U indicates no horizontal motion.

PASCAL COMPILER
Page 145

TEXAS INSTRUMENTS UNITS

o COUNTDOWN--The number of sixtieths of a second during which the sprite
exists with its current attributes. After that, another Sprite change list is
pracessed or the sprite ceases to exist. COUNTDOWN is an integer from O
through 32,767. If an original value of 0 is given, the sprite continues with its
current attributes. -

8 LINK--A pointer to the next motion for a sprite to have when COUNTDOWN
reaches 0. If LLINK is 0, the sprite ceases to exist when COUNTDOWN
reaches Q.

® AUTO DISPOSE--Reserved for possible future use.

Sprites are coincident if any of the pixelé that are "on" in any sprite overlap the
pixels that are "on" in any other sprite. In case of coincidence, the sprite with the
lowest number covers other sprites. If the pixels from more than four sprites appear
anywhere ‘on a horizontal screen line, the pixels on that line disappear except for the
pixels belonging to the four sprites with the lowest sprite numbers.

As with sound processing, the appearance and motion of sprites continue without
program control while other statements are executed.

The procedures and functions included in SPRITE are listed below.

Section Name Description

6.5.1 SET_SPRITE Creates a sprite.

6.5.2 SET_SPR_ATTRIBUTE - Specifies the attributes of a sprite.

6.5.3 DEL_SPRITE Deletes a sprite.

6.5.4 SET_SPR_SIZE Sets the size of a sprite.

6.5.6 SPRITE_COINC Returns whether any sprites are coincident.

6.5.7 PAST_SPRITE_COINC Returns the time since any sprites were
coincident.

6.5.8 GET_SPRITE Returns the attributes of a sprite.
6.5.1. SET_SPRITE
SET_SPRITE is a procedure with the form

SET_SPRITE (SPRITE_NUMBER: INTEGER; PACKET:LINK)jy

SPRITE_NUMBER is an integer from 0 through 31 which specifies the sprite to be
affected. PACKET must have been set as described above.

PASCAL COMPILER
F’a_ge 146

TEXAS INSTRUMENTS UNITS

As an example of sprites, the following program moves a sprite in a diamond on the
screen.

preogram diamond;
uses sprite, support;
var scll, scl2, scl3, scld: link;
ch: char;
begin
new(scll);
new(scl2);
new(sel3);
new(scl4);
scll”.packet := [spr_pattern..spr_x_vel];

with scll” do { Moves up and to the right. }
begin .
pattern_pumber := 65; { Letter A. }
color := 4; { Dark blue. }-
elock 1= 1j { Right side defines
L : x-position.} ,
y_pos := l44; : { Starting y-position of l44. }
x_pos 3= 128; { Starting x-position of 128. }
y_vel := -143 - { Starting y-velocity of -14. }
X _vel 1= 1l4; { Starting x-velocity of 14, }
countdown := 60; { Exists for about 1 second. }
link := scl2; = . { When countdown equals 0,
attributes change to those
described in scl2. }
end; : _ o '
with scl2” do S { Moves up and to the left. }
begin :

packet := [spr_y vel, spr_x vell; { Only y-velocity and
- : o x-velocity are
changed. }

y_vel := -14; { New y-velocity of -14. }
o x_vel 1= -1l4; { New x-velocity of l4. }
link := scl3; | New link of scl3. }
countdown := 60; { Countdown of 60. }
end;
~with scl3” do . { Moves down and to the left. }
begin

-PASCAL COMPILER
Page 147

- TEXAS INSTRUMENTS WNITS

packet 3= [spr_y_yei, spr_x_vell]; { Only y-velocity and
X-velocity are
changed. }

New y-velocity of 14. }

New x-velocity of -14. }

New link of scl4. }

Countdown of 60. }

y vel := 14;
Xx_vel = -14;
link = scli;
countdown := 60;
end; _
with sclé4” do : { Moves down and to the right. }
begin
packet := Lspr_y_vel, spr_x_vell; { Only y-velocity and
X-velocity are
changed. }
New y-velocity of 14. }
New x-velocity of l4. }
New link of scil. }
Countdown of 60. }

—— e pmA ke

y_vel 14;
X_vel 1= 1l4;
link := scil;g
countdown := 60;
end;
page (output);
set_screen(2);
set_sprite(l, scll);
read(ch);

[§}

—— —— ey

Clears the screen. }
Uses pattern mode. |
Starts the sprite series. |
Waits until a character is
. typed. }
set_screen(l); { Deietes sprite and returns to
' text mode. }

—— A e

i

end.
6.5.2 SET SPR_ATTRIBUTE
SET_SPR_ATTRIBUTE is a procedure with the form

SET_SPR_ATTRIBUTE (SPRITE_NUMBER,PATTERN_NUMBER,COLOR,CLOCK, Y
POS,X_POS ,Y_VEL,X_VEL: INTEGER) ;

SET_SPR_ATTRIBUTE specifies all of the attributes of a new sprite or changes the
attributes of an existing sprite. The procedure constructs the correct SPRITE
CHANGE_LIST to define the specified sprite.

SPRITE_NUMBER is an integer from U to 31, specifying the number that refers to
the sprite.

PASCAL. COMPILER
Page 148

TEXAS INSTRUMENTS UNITS

See Section 6.5 for an exlanation of PATTERN NUMBER, COLOR, CLOCK, Y_POS,
X_P0OS, Y_VEL, and X_VEL.

6.5.3 DEL_SPRITE
DEL SPRITE is a-procedure with the form

DEL_SPRITE (SPRITE NUMBER: INTEGER) ;
DEL_SPRITE creates the correct SPRITE_CHANGE_LIST to make the sprite specified
by the integer SPRITE_NUMBER disappear. The characteristics of the sprite are all
set to 0, except for 'Y_POSITI'ON, which is set to 192.
6.2.4 SET_SPR SIZE
SET_SPR_SIZE is a procedure with the form

SET_SPR_SIZE (SIZE:INTEGER) ;
The SET_SPR_SIZE sets the size of all sprites according to the value of SIZE. A value
of O sets all sprites to single-size. A value of 1 sets all sprites to magnified. A
value of 2 sets all sprites to double size. A value of 3 sets all sprites to magnified,
double size. The default value is O.
A large sprite takes up four times as many pixels as a small sprite. Enlarging sprites
makes the pixels of each sprite four times as large. The explantion is down and to
the right if the value of CLOCK is 0, and down and to the left if the value of

CLOCK is 1. The diagram on the next page shows how setting SIZE to 1 affects the
sprite with the pattern string "8142241818422481".

PASCAL COMPILER
Page 149

TEXAS INSTRUMENTS UNITS

SIZE equals 03 Size equals 1;
Single Size Sprite Magnified Sprite
s I O O T B N Y IXIXE L E b ixixl
L IXE | b4 oIxI | XAXE b L1 IxIx]
L1 Ix] | Ixl || L IXIXE b ixix] |t
TN bt bbb ogxix] ||
ELLixIxE ||| LTIt T axIxi b | | |
L Loixd dx] || L b b bbb Ixdx] 1|
CLAXE L L] x| LT xIXIXIX] it 1|
XLl Ll L xaxIxIxl |
[O A I 4 D P e I e e B B
L bbb XXXt b}
L4 1 oaxixt |1 LIxixt |
LU axaxt L bxIxt |
L DIXE LIl ||
Ll IxIX) 40441 IxIxl ||
XIXU L L L1t IXIx]
L L bbb ixixl

IXIXE |

A single size sprite‘is defined by only the character specified by PATTERN_NUMBER
when the sprite is created with the SET_SPR_ATTRIBUTE procedure or altered with
the SET_SPR_PATTERN procedure.

A double size sprite is defined by four characters, including the one specified by
PATTERN_NUMBER when the sprite is created with the SET_SPR_ATTRIBUTE' _
procedure or altered with the SET_SPR_PATTERN procedure. The expansion is down
and to the right if the value of clock is 0. If the value of clock is 1, the expansion
is down and to the left . The first character is the one specified when the sprite is
created or altered, if that character is evenly divisible by 4, or the next smallest
number that is evenly divisible by 4. That character defines the upper left corner of
the sprite. The next character defines the lower left corner of the sprite. The next
character defines the upper right corner of the sprite. The final character defines
the lower right corner of the sprite.

‘PASCAL COMPILER
Page 150

TEXAS INSTRUMENTS UNITS

Suppose the following characters have been defined.

Number Description Portion of Double Sprite
32 181818FFFF181818 Upper left corner

33 8142241818244281 Lower left corner

34 0000001818000000 Upper right corner

35 FFr818181818181FF Lower right corner

The following diagram shows the effect of the double sprite procedure on a sprite
which was defined with a character number of 32, 33, 34, or 35. The upper left
corner is character 32. The lower left corner is character 33. The upper right corner
is character 34. The lower right corner is character 35.

SIZE equals 2;
Double Size ‘Sprite

N O < S e s T s
N O < v O T T T T I O O
S . < N O OO O A T Y I I
EXIXAXIXAXIXIXIX] || IXEXE 1§ |
[XIXIAXAXIXIXIXE |1 IXEXE 1§
I N N 24 2 I 1 O O O e A
OO O o O Yy o
N T ¢ N O T O O O A
IXE & 0 1 11 IXIXIXIXIXIXIEXEXX]
I T O T - O O A 224
I . N . Y O T A T A 0.4
I 8 1 T O O O N B
N O 6 - T O I O .4
[S 2 Y . N O - O I O 24
S T Y . O - N I O B B4
IXE L LT b IXEXIEXIXEXIX XXX

PASCAL COMPILER
Page 151

TEXAS INSTRUMENTS UNITS

SIZE equals 3;

Magnified, Double Size Sprite

L b IXixaxxt bttty
EE b IXixIxixt Lo bbbttty
P axIxixIxt b et bbb bl
L b IXIXExIxt | i ittt ettt
N T O . 9 ¢ O T T I O O O R O O
Ll L IXExexaxt L b bttt i bttt it rtril
EXIXAXEXEXEXEXAXIX DX EXIXXAXAXIX] bbb axdxdxt |1 g |
EXEXEXIXEXIXEXIXAXIXAXIXEXIXIXIXT 1§ 8 1 1 IXixIxixi 11110
EXEXIXIXEXEXIXAXIXIX DX IXEXEXIXIXT b L f b b ixaxIxixt |1 11| |
XXX X EXEXIXEXDXAXIXIXIXIXIXIXE L1 1L L IxIxixixt F 41111
Lt Ixaxixdxt L ittt v iitiil
i P PpxIxixixi L i ittt
Ll L IXEXIXEXE bttt by rrr il
L Ll b P iXIXixIxt L i ittt rieliny
P axaxaxixd oty bbb
| | I Ll IXIXIXiXE b v p e et rrr
IXIXE L4 T bbb L4 b EXEXEXEXEXIXIXEX XX XXX XX XXX
IX1X I L b L DT IXEXEXIXEXEX XX XXX XXX XX XX
[S« S 4 -« -« < T Y O T A <4
R 28 N T O -4 .« O ¢ =« e e A 42 {
T O O T O O € B T ¢ . I O O R I R 4B
Ll d IxIxd b ixixt L1 IxIxE bbbl ixix
) 9 € 4 I I A B e I I T I PR
N T O 4 2 < S T ¢ . O O O A O O A R A D4
N S € 2 T O Y P -« A I Y O O O Y404
I .4 24 ¢ . O -4 . N O O O O O A 4 Y
I T . 2 N O N . S Ot o <« A T T Y I O A A 04
PL L Ixixd i PaxIxXE b L ixixt bbb iIxx
Y I O O Y T4 < I N 4 2« I I O O A 0404
[T 2 T ¢ - S 4 .« N A I O I O I A 4
IXEXE 14 b LT b T EXEXEXEXEXEX XXX X XXX XXX XX
IXEXT 1 L8 L1 bbb i T IXEXEXEXEXIXIXEX XXX XXX XX XX

6.5.5 SPRITE_COINC
SPRITE_COINC is a function with the form

SPRITE_COINC: BOOCLEAN;

PASCAL COMPILER

Page 152

TEXAS INSTRUMENTS UNITS

SPRITE_COINC returns a Boolean value indicating whether any sprites are coincident
when the function is executed. Sprites are coincident if any of the pixels that are
"on" in any sprite overlap the pixels that are "on" in any other sprite.

6.5.6 PAST_SPRITE_COINC
PAST_SPRITE_COINC is a function with the form
PAST_SPRITE_COINC: INTEGER;

PAST_SPRITE_COINC returns an integer from 0 through 32,767, indicating how many
sixtieths of a second have elapsed since the first coincidence of any sprites. The
first coincidence of any sprites is the first coincidence that occurred between two
sprites since the program started or since the last use of the PAST_SPRITE_COINC
function. Sprites are coincident if any of the pixels that are "on" in any sprite
overlap the pixels that are "on" in any other sprite.

After the maximum value of 32,767 is reached, no further updating of the value
occurs. The value is changed back to 0 and the count begins again when the PAST
SPRITE_COINC function is executed.

6.5.7 GET SPRITE
GET_SPRITE is a procedure with the form

GET_SPRITE (SPRITE_NUVBER: INTEGER; PACKET:LINK);
GET_SPRITE reads the characteristics of the sprite specified by the integer SPRITE
NUMBER and returns it in the sprite change listed pointed to by PACKET. SPRITE
NUMBER is an integer from 0 through 31. PACKET is described in Section 6.5.
The sprite change list pointed to by PACKET contains PATTERN NUMBER, COLOR,
CLOCK, Y_POS, X POS, Y_VEL, X VEL, and COUNTDOWN.

For an example, see the descriptiqn of SET_SPRITE, Section 6.5.1.

PASCAL COMPILER
Page 153

TEXAS INSTRUMENTS UNITS

6.6 SPEECH HANDLING

Speech on the TI Home Computer requires that the TI Solid State Speech ™

Synthesizer (sold separately) be attached to the computer.

In order to use speech, you must include the following statement in the declaration
portion of your program.

type longstring = string[2551];

The procedures and functions included in SPEECH are listed below.

Section Name Description
6.6.1 GET_SPEECH Returns a speech data pattern.
6.6.2 SAY Causes the computer to speak a word or phrase.

6.6.1 GET_SPEECH
GET_SPEECH is a procedure with the form

GET_SPEECH (WORD_STRING:LONGSTRING; VAR RETURN
STRING: LONGSTRING) ;

GET SPEECH returns in RETURN_STRING the speech data pattern which corresponds
to the first word or phrase in WORD_STRING.

The value of WORD_STRING is any string value listed in the Appendix, Section 8.15.
The value of RETURN_STRING is used with the SAY procedure. See the example
with the explanation of the SAY procedure.

6.6.2 SAY

SAY is a procedure with the form

SAY (SAY_STRING:LONGSTRING);

SAY causes the computer to speak the words, phrases, or speech data patterns in
SAY _STRING when the Speech Synthesizer is connected to the console.

Only the first 63 entries in SAY_STRING are spoken. If there are mare than 63

entries, the computer says "UHOH" to indicate that SAY_STRING is too long.

PASCAL COMPILER
Page 154

TEXAS INSTRUMENTS UNITS

The following program causes the computer to say "Hello how are you',

program speak;

uses speech;

type longstring= str1ng[255]

var stringl, string2: longstring;

begin '
GET_SPEECH('Hello', stringl);
GET SPEECH('how' string2); : |
SAY(concat(strlngl string2,"are"," you"));

end.

PASCAL COMPILER
Page 155

SECTION 7: USING THE COMPILER

The Pascal Compiler is based on the P2 portable compiler from the Eidgenossische
Technische Hochschuele in Zurich. It is used by selecting the Cl{ompile or R{un
command when the System promptline is displayed. If a work file exists, it is
compiled. Otherwise, you are asked for a source file name. The Compiler generates
code which can then be run by your computer.

While the Compiler is running, it displays a report of its progress on the screen. The
report of a sample compilation of the program TEST, with procedures INITIALIZE
and DELAY, might appear on the screen as foliows.

Compiling...

Pascal compiler - release 99/4 IV.0 ClA-4

<0 P ceas e

INITIALIZE

<19 . e essrasar et ece s aanans

DELAY

<61 D it ittt ees st e et ress s et e R EE e n e
<111 p PN .

TEST

<119 Deeessaseansreseenns i e e seaareraarecaaaseeaean
237 lines compilied '

TEST

In the first pass, the Compiler displays the name of each routine. The numbers
enclosed within angle brackets (¢ >) are the current line numbers, and each dot on the
screen represents the compilation of one source line. In the second pass, each name
is the name of a segment, and each dot rehresents one routine.

For a given compilation, this output can be suppressed with the Q+ Compiler option
(see Section 7.1) or by setting HAS SLOW TERMINAL to TRUE in
SYSTEM.MISCINFO (see the UCSD p-System Utilities manual).

PASCAL COMPILER
‘Page 156

USING THE COMPILER

The code file produced is *SYSTEM.WRK.CODE if the source file was the work file
or if you press <return> when asked for a code file name. If there is no work file,
you are asked for both a source and code file name. Any file name is acceptable.
The Compiler appends .TEXT to the souce file name and .CODE to the code file
name. The R{un command can be used to execute the file SYSTEM.WRK.CODE.
The X{ecute command can be used to execute any code file. See the UCSD p-Code
manual.

When the Compiler detects a syntax error, the text surrounding the error is displayed,
along with an error number (or error message if *SYSTEM.SYNTAX is on line) and
"<---" pointing to the place in which the compiler detected an error.

If both the Q and L options are set (see Section 7.1), the compilation continues, the
syntax error is reported in the listing file, and the screen remains undisturbed.

In the default situation, Q and L are both off (see Section 7.1), so the Cornpiler qives
you the option of typing a space, a <return>, or E when an error occurs. Typing a
space continues the compilation, <return> terminates the compilation, and E calls the
Editar, which places the cursor at the symbol where the error was detected so that
you can correct it.

The syntax errors detected by the Compiler are listed in the Appendix, Section 8.5.
All error numbers are accompanied by a message after entering the Editor, provided
*SYSTEM.SYNTAX is available to the system. *SYSTEM.SYNTAX is on the diskette
which contains the Editor and Filer. Any error messages also appear on the screen.

PASCAL COMPILER
Page 157

" USING THE COMPILER

7.1 COMPILE-TIME OPTIONS

You can direct some of the Compiler's actions with compile-time options included in
the source code. Compile-time options are a set of commands that appear within
"pseudo-comments.” - A pseudo-comment is a comment with a dollar sign immediately
following the left-hand delimiter. The following are examples of pseudo-comments. -

{$1+}

{$U MOLD.CODE }

(*$1+,5-,L+%)

{$R}
The two kinds of compile-time options are "switch" options and "string" options. A
switch option is one of the letters described below’ followed by ‘a ™", "M, op "M, A
string option is a letter followed by a character string. A pseudo-comment can
contain any number of switch options (separated by comimas) and one strihg-‘roption‘.
If a string option is present in a pseudo-comment, it must be the last option. The
string is delimited by the option letter and the end of the comment.

If the pseudo-comment uses braces (| and }), the string in a string option cannot
contain an asterisk (*). String options use the string following them. Switch options
are either toggles or stack options. If a switch option is ‘a toggie, a "+" turns it on,
and a "-" turns it off. : : : ' - '

The options I and R are stack options, as are the conditional compilation flags. With
each stack option, the current state, "+" or "-", is saved on the top of a stack, up to
15 states deep. The stack can be "popped" by a "™, which re-enables the previous
state of that option. If the stack is "pushed" deeper than 15 states, the bottom state
of the stack is lost. If the stack is popped when it is empty, the value is always "-".

The following illustrate the use of the stack with the I and R options.

1{$I-} .. current value is "-" so there is no I/O checking.
{$1+} ... current value is "+",

{$1~} ... current value is "-" again.

{$I"} . current value is "+" because this was the default.

1$1°} .. current value is "-" because the stack is now empty.

" PASCAL COMPILER
- Page 158

USING THE COMPILER

The default options for a compilation are as follows.
{$R+, I+,L-,U+,P+}

These defaults remain in effect unless you override them. The Q option defaults to
the Q- unless the value of the HAS SLOW TERMINAL data item has been changed.

HAS SLOW TERMINAL can be set in SYSTEM.MISCINFO (see the UCSD p-System

Utilities manual).

Compile-time options also control conditional compilation, discussed in Section 7.2.

Individual options are listed below in alphabetical order and discussed in more detail
on the following pages.

B: Begin conditionally compiled source code.
C: Copyright notice insertion. :
D: Declare or alter value of a conditional computation flag.
E: End conditionally compiled source code.
I: (1) Input/output check control.
(2)- Include a file.
L: (1) List a file control.
(2) File to write a listing to.
P: Pagination control.
Q: Quiet console--determines output to the screen.
R: Range checking control.
T: Title insertion.
U: (1) User or System compilation indicator.
(2) Use a library.

7.1.1 Compile-Time Option Descriptions
The following are descriptions of each of the compile-time optians.

B: B is a string option. It begins a section of conditionally compiled source code.
See Section 7.2.

C: C is a string option. It places the string directly into the copyright field of the
. code file's segment dictionary. This lets you include a copyright notice in the
code file. ' :

PASCAL COMPILER
Page 159

USING THE COMPILER

D: D is a string option. It declares or alters the value of a conditional compilation
fiag. See Section 7.Z.

E: E is a string option. It ends a section of conditionally compiled source code.
See Section 7.2.

Two options are named "I". One is a stack switch option (IOCHECK), and the
other is a string option (INCLUDE).

IOCHECK OPTION
Default value: I+

I+: Instructs the Compiler to generate code after each 1/O statement, in order
to check that the I/O operation was successful. If not, the program
terminates with a runtime error.

[-: Instructs the Compiler not to generate any I/0O checking code. In the
case of an unsuccessful 1/O operation, the program continues.

The 1- option is helpful for testing IORESULT (see Section 3) when there is the
chance of an I/0 failure but the program should not be stopped. If I- is used
and you do not test IORESULT, the efects are unpredictable. IORESULILTS are
listed in Section 3 and the Appendix, Section B.Z.

INCLUDE FILE MECHANISM

The string, delimited by the letter "I' and the end of the comment, is
interpreted as the name ef a file. If that file can be found, it is included in
the source file and compiled.

For example,

{$1 BOLA}

includes the file BOLA.TEXT in the program's source.

If the initial attempt to open the file te be included fails, the Compiler
‘concatenates a ".TEXT" to the file name and tries again. If the second attempt

‘fails or an 1/0 error occurs while reading the include file, the Compiler responds
with a fatal syntax error.

PASCAL COMPILER
Page 160

USING THE COMPILER

Included files can be nested up to three files deep.

If a file name begins with a "+'" or "-", a blank must be inserted between the
letter I and the string, as shown in the following example. '

{$1 +BLBD.BBW!}

L can be used either as a toggle switch option or a string option. The default is

L-, which prevents a listing from being generated. - An L+ enables listing. If no

listing file is named, the Compiler writes to *SYSTEML.LST.TEXT. You can
specify a different name for a listing file by using L. as a string option, as
illustrated in the following example.

{$L DEMDL.TEXT}

writes to DEMOL.TEXT on the default diskette. Listing files which are sent to
the diskette can be edited the same as any other text file, provided they are
created with a .TEXT suffix. Without the .TEEXT suffix, the System treats the
listing as a data file.

Some lines are commented out with braces ({) to warn you that a comment
may have accidentally removed some Pascal code. The numbers that precede
the other source line are as follows.-

The line number.

The segment number.

The routine numbertlexical level.

The number of words of data or code storage which the routine requires at
that point. ' S '

Rather than a lexical level, declaration lines show 'a "D" following the procedure
number. ‘

PASCAL COMPILER
Page 161

-USING THE COMPILER

Here is a portion of a listing with errors.

596 160 1:5 228 lastpageitem:zmin(laste'ntry,_lastentry);

----> Error #1104 <----- _

597 10 1:5 239 L _ _

598 10 1:5 239 { Loop through the page. }

599 10 1:5 239 Pagelnx:=0;

600 10 1:5 242 { Function returns next greater. |

601 10 1:5 242 Repeat {Until found or (Pagelnx>lastentry).}
602 10 1:6 242 Assert(PageInx<lastpageltem,'bad Pagelnx');

-f--S Error #104 {ammmn-

The previous error is on line 596
607 10 1:6 271 found:=(data{ Pagelnx }.key>key);

The error messages indicate the position of the previous error. The.Compiler
also lists readable error messages from *SYSTEM.SYNTAX, provided that file is
available to the System.

Regardless of whether the compilation is completed, the listing is saved.

P is a switch option. P- turns off pagination in the listing, P+ {the default)
turns it on again, and a P by itself starts a new page in the listing.

Q is the "quiet compile" option. It su‘ppr_esses the Compiler's.output to the
screen. The default value is (G-, which uses the value of SLOWTERM in
*SYSTEM.MISCINFQ (see the ucsd p-System Utilities manual).

Q+ causes the Compiler to suppress output to the screen, while Q- causes the
Compiler to check to see if SLOWTERM is TRUE or FALSE. If SLOWTERM is
TRUE, then information is not sent to the screen. If it is FALSE, then
information is sent to the screen. On the Home Computer the default is Q- and
progf‘am information is sent to the screen.

R is a stack switch option. The default value is R+, which turns range checking
on. R- turns range checking off.

Programs compiled with the R- option set run faster and require less space.
However, if an invalid index gccurs or an invalid assignment is made, the

PASCAL COMPILER
- Page 162

USING: THE COMPILER

program is not terminated with a runtime error, and the results are exceedingly
difficult to debug. Until a program has been completely tested, it is strongly
. advised to compile it with the R+ option left on. :

T: T is a string option. The string becomes the new title of the pages in the
listing file.

U: Two options are indicated by U. - One is a toggle switch option (USER'
PROGRAM), and the other is a string option (USE LIBRARY).

USER PROGRAM OPTION

This option determines whether this compilation is a user program compilation
~or a compilation of a System program. . If present, it must appear hefore the .
reserved word PROGRAM or UNIT. . '

The default value is U+, which specifies user source. U- allows corpilation of
units with names that are predeclared in the System. U- also sets R- and I-.
The average user never uses this option.

USE LIBRARY OPTION

- This is a string option with the string interpreted as a file name..If the file

-named in the U option can be found, the Compiler searches it for the code of
~UNITs named in subsequent USES declarations. -If a UNIT is not found, the
. Compiler searches *SYSTEM.LIBRARY.

If a program contains.USES ‘declarations but no U option, the C'ompiler looks for
“the WSEd UNITs first in the source file itself, and then in *SYSTEM.LIBRARY.

The following is: an example of a valid USES clause using the "U" option. -

USES UNIT1l, UNIT2, { Found in *SYSTEM.LIBRARY. }
[$U A.CODE}
UNIT3,
{$U B.LIBRARY}
UNIT4, UNITS;

Note: SCREENOPS.CODE and COMMANDIO.CODE, on the Compiler diskette, are
libraries used by some of the UCSD Pascal intrinsics described in Section 3.

PASCAL COMPILER
Page 163

USING THE COMPILER

7.2 CONDITIONAL COMPILATION

Portions of source code can be conditionally compiled. Whether they are compiled
depends on the value of a flag that is declared by a compile-time option at the
beginning of the source file.

A section of source code to be compiled conditionally must be delimited by the
options B and E. Both of these options must name the flag which determines
whether the code is compiled. The flag itself is declared by a D option at the
beginning of the source. D options can change the value of an existing flag at other
locations in the source.

Each flag in a program must appear in a D option before the source heading. The flag
name follows the rules for Pascal identifiers. If the flag name is followed by a "-",
that flag is set FALSE. The flag can be followed by a "+", which sets it to TRUE.

If no sign is present, a flag is TRUE. The flag name can also be followed by a ™",
as described below.

The state of a flag can be changed by a D option which appears after the source
heading. If the flag has not been declared, an error resuits. The B and E options
delimit a section of code to be compiled conditionally. When the Compiler
encounters a B option, it scans for an £ option which names the same flag and
resumes compilation from that point. The B option-can follow the flag name with a
", which causes the delimited code to be compiled if the flag is FALSE. In the
absence of a "-", the code is compiled if the flag is TRUE. Although the flag name
can also be followed by a "+" or ", these are ignored. In an E option, the flag name
can be followed by a "+", "-", or ™. However, these symbols are ignored.

The state of each flag is saved in a stack, just gs the state of a stack switch option
is saved. 'Thus, using a D option with " yields the previous value of the flag. Each
flag's stack is 15 values deep. If a l6th value is pushed, the bottom of the stack is
lost. If an empty stack is popped with ", the value returned is always FALSE.

If a section of code is not compiled, any pseudo-comments it may contain are
ignored. '

PASCAL COMPILER
“‘Page 164

USING THE COMPILER

The following example illustrates the use of conditional compilation options.

{$D DEBUG-} { Declares DEBUG and sets it FALSE. |}
PROGRAM S IMPLE ; o

..

BEGIN '
{$D DEBUG+} { Changes DEBUG to TRUE. |
{$B DEBUG} | 1f DEBUG is TRUE, this section is compiled.}
WRITELN('There is a bug.'); ' S
{$E DEBUG} { This ends the section. }
| $D DEBUG" } { Restores previous vaiue of DEBUG--in this

case, FALSE. } : - T

{$B DEBUG-} {If DEBUZ is FALSE, this section-is Comp-iled.}
WRITELN('Nothing has failed.'); S
{$E DEBUG} -

END : { sIMPLE |.

PASCAL COMPILER
- Page 165

SECTION 8:

APPENDICES

The following are the appendices contained in this section.

Appendix
Execution Errors

I/O Resuits
- Device Numbers
Pascal Syntax Errors

Summary of Differences between UCSD Pascal

and Standard Pascal

Summary of Differences Between Versions
Converting Programs for use under IV.0

Reserved Words
Assembler Syntax Errors

American Standard Code for Information

Interchange (ASCII)
Musical Tone Frequencies
Color Codes

High-Resolution Color Combinations

Mathematical Functions
List of Speech Words

Program Development with Multi-Drive

Systems

Section

8.1
8.2

8.3 .
8.4

8.5
B.6.
8.7
8.8

8.9

8.10
8.11
8.12
8.13
8.14
8.15

8.16

PASCAL COMPILER

Page 166

8.1 EXECUTION ERRORS

oo~ OO

R Tl o
L W

System error... FATAL

Invalid index, value out of range
No segment, bad code file
Procedure not present at exit time
Stack overflow

Integer overflow

Divide by zero

Invalid memary reference <bus timed out>
User break

System I/O error... FATAL

User I/0 error

Unimplemented instruction
Floating point math error

String too long

Halt, Breakpoint

Bad Block

APPENDICES

All run time errors cause the System to I{nitialize itself; the errors marked FATAL

also cause the System to reinitialize.

Some FATAL errors leave the System in an

irreparable state, in which case you must reinitialize the system by turning the
computer off and starting it again. - ' :

PASCAL COMPILER

-Page 167

APPENDICES

8.2 1/O0 RESULTS

0 No error

1 Bad block, parity error (CRC)

2 Bad device number

3 Illegal 1/0O request

4 I/O operation canceiled by user (REMIN:, REMOUT:, PRINTER)
5 Volume is no longer on-line

6 File is no longer in directory

7 Bad file name

8 No room, insufficient space on volume

g No such volume on-line

10 No such file on volume

11 Duplicate directory entry

12 Not closed: attempt to open an open file
13 Not open: attempt to access a closed file
14 Bad format: error in reading real or integer
15 Ring buffer overflow

16 Volume is write-protected

17 Illegal block number

18 1llegal buffer

3.4

See also the information in Section &2ty IORESULT..

?% ‘aaé_ ‘b\@{“‘,\é_, N ?
cops & e . annnn - 280

PASCAL COMPILER
Page 168

APPENDICES

8.3 DEVICE NUMBERS

Device Number Volume Name Description
0 System use.

1 CONSOL.E: Keyboard and display with echo.
2 SYSTERM: Keyboard and display without echo.
3 GRAPHIC:
4 Disk First disk drive.
5 Disk Second disk drive.
6 PRINTER: 9600 Baud RS232 input/output.
7 REMIN: 300 Baud RS232 input.
8 REMOUT: 300 Baud RS5232 output.
9 Disk Third disk drive.
10 User-defined disk or other device.
11 User-defined disk or other device.
14 05: System use.
31 TAPE: Cassette tape.

- 32 TP: Thermal Printer.

Devices with numbers 9 or greater are user-defined devices. Devices 4 and 5 are
diskettes. REMIN: and REMQOUT: are often set to the same bidirectional port.

More information on devices can be found in the UCSD P-Code and Filer manuals.

PASCAL COMPILER
Page 169

~APPENDICES

8.4 PASCAL SYNTAX ERRORS

1 Error in simple type
2 ldentifier expected
3 Unimplemented error

4z) expected

51 ': ' expected

6t Illegal symbol (terminator expected)
7: Error in parameter list

8: 'OF' expected

92 ' expected

10: Error in type

i1 ™ expected

12: '} expected

13: END' expected

14: 's' expected

15: Integer expected

16: '=' expected

17: 'BEGIN' expected

18: Error in declaration part
19: Error in <field-list>

20 L' expected

21 ¥ expected

22: 'INTERFACE' expected

23: 'TMPLEMENTATION' expected
24 'UNIT' expected

50: Error in constant

51: 's =' expected

52: "THEN' expected

53 'UNTIL' expected

54; 'DO' expected

55; 'TO' or 'DOWNTO' expected in for statement
56: 'IF' expected

57; FILE' expected

58: Error in <factor> (bad expression)

59: Error in variable

~-PASCAL COMPILER
Page 170

e

60:
61:
62:
63

101:
102:
103
104:
105:
106:
107:
108:
109

110;
11l:
112:
i13:
1i4:
115:
1lé:
1i7:
ils:
119;

120:
121
122:
123:
124
125
126:
127:
128:
129:

Must be of type 'SEMAPHORE'

Must be of type 'PROCESSID!

Process not allowed at this nesting level
Only main task may start processes

Identifier declared twice

{Low bound exceeds high bound

Identifier is not of the appropriate class -
Undeclared identifier

Sign not allowed

Number expected

Incompatible subrange types

File not allowed here

Type must not be real

<tagfield> type must be scalar or subrange

Incompatible with <tagfield> part

Index type must not be real

Index type must be a scalar or a subrange

Base type must not be real

Base type must be a scalar or a subrange

Error in type of standard procedure parameter

Unsatisified forward reference :

Forward reference type identifier in variable declaration
Re-specified params not OK for a forward declared procedure

Function result type must be scalar, subrange or pointer

File value parameter not allowed '

A forward deciared function's result type can't be re-specified
Missing result type in function declaration

F-format for reals only

Error in type of standard procedure parameter

Number of parameters does not agree with declaration

Illegal parameter substitution

Result type does not agree with deciaration

Type conflict of operands

‘PASCAL COMPILER
Page 171

APPENDICES

APPENDICES

130:
131:
132
133:
134:
135
136:
137:
138:
139;

140:
141;
142;
143;
144
145:
146:
147:
148:
149:

- 150;
151:
152:
153
154;
155:
156:
157
158:
159:

E.xpression is not of set type

Tests on equality allowed only

Strict inclusion not allowed

File comparison not allowed

Illegal type of operand(s)

Type of operand must be Boolean

Set element type must be scalar or subrange

Set element types must be compatible -

Type of variable is not array

Index type is not compatible with the declaration

Type of variable is not record

Type of variable must be file or pointer

Illegal parameter solution

Illegal type of loop control variable

Illegal type of expression

Type conflict ,

Assignment of files not allowed

Label type incompatible with selecting expression
Subrange bounds must be scalar

Index type must be integer

Assignment to standard function is not allowed
Assignment to formal function is not allowed
No such field in this record

Type error in read

Actual parameter must:be a variable

Control variable cannot be formal or non-local
Multidefined case label

Too many cases in case statement -

No such variant in this record

Real or string tagfields not allowed -

:PASCAL COMPILER
Page 172

160:
161:
162:
163:
164:
165
166:
167:
168;
169:

170:
171:
172
173:
174;:
175:

182;
183:
184:
185:
186:
187:
188:
189:;

190:
191:
192:
193
194:
195:

201:
202:
203
204:

Previous declaration was not forward

Again forward declared

Parameter size must be constant

Missing variant in declaration

Substitution of standard proc/func not allowed
Multidefined label

Multideclared label

Undeclared label

Undefined label

Error in base set

Value parameter expected

Standard file was re-declared

Undeclared external file

FORTRAN procedure or function expected
Pascal function.or procedure expected
Semaphore value parameter not aliowed

Nested UNITs not allowed

External declaration not allowed at this nesting level
External declaration not allowed in INTERFACE section
Segment declaration not allowed in INTERFACE section
Labels not allowed in INTERFACE section

Attempt to open library unsuccessful

UNIT not declared in previous uses declaration

"WSES' not allowed at this nesting level

UNIT not in library

Forward declaration was not segment
Forward declaration was segment

Not enough room for this operation

Flag must be declared at top of program
Unit not importable

Error in real number--digit expected

String constant must not exceed source line
Integer constant exceeds range

8 or 9 in octal number

PASCAL COMPILER
Page 173

APPENDICES

APPENDICES

250:
251:
252:
253:
254
2563
257
258:
259;

300:
301;
302
303
304.

398:
399:

400;
401:
402;
403:
404,
405
406:
407
408:
409:

410:

500:

Too many scopes of nested identifiers

Too many nested procedures or functions

Too many forward references of procedure entries
Procedure too long

Too many long constants in this procedure

Too many external references

Too many externals

Too many local files

Expression too complicated

Division by zero

No case provided for this value
Index expression out of bounds

Value to be assigned is out of bounds
Element expression out of range

Implementation restriction
Implementation restriction

Illegal character in text
Unexpected end of input
Error in writing code file, not enough room

‘Error in reading include file

Error in writing list file, not enough room
'PROGRAM' or 'UNIT' expected

Include file not legal

Include file nesting limit exceeded
INTERFACE section not contained in one file
Unit name reserved for system :

disk error

Assembler error

PASCAL COMPILER
Page 174

APPENDICES

8.5 SUMMARY OF DIFFERENCES BETWEEN UCSD PASCAL AND
STANDARD PASCAL

The fellowing summarize the attributes of UCSD Pascal that are different from
Standard Pascal. The differences include string handling, input/output intrinsics,

memory management, concurrency, and miscellaneous differences. Section 8.5.6 gives
some suggestions for writing a program that can be used in different versions of

Pascal.

8.5.1 String Handling

STRING is an intrinsic data type, consisting of a PACKED ARRAY OF CHAR
together with a length. Strings can be assigned, passed, and input or output.

The following UCSD intrinsics are for the manipulation of strings.
function OCONCAT (slource [,source... :st-ring]):. string
function COPY (source:string; index,size:integer): string
procedure DELETE (destination}étring; index,size:intéger)
procedure INSERT (source,destination:string; size:integer)
function LENGTH (source:string): integer
function POS5 (péttern,snurce:string): integer

8.5.2 I/O Intrinsics

READ, READLN, WRITE, and WRITELN can only be used on files of type TEXT,

which is a FILE OF CHAR, in Standard Pascal. In UCSD Pascal, they mey also be

used on files of type INTERACTIVE with a slightly different meaning for READ and
READLN.

In addition to the Standard file types, files can be untyped or INTERACTIVE. The
predefined files INPUT, OUTPUT, and KEYBOARD, are INTERACTIVE in UCSD
Pascal. KEYBOARD is a non-echoing equivalent of INPUT.

PASCAL COMPILER
-Page 175

APPENDICES

If a file is INTERACTIVE, the EOF function is set by input of an <etx> character,
which is defined in SYSTEM.MISCINFO {(see the UCSD Pascal Utilities manual), the
EOLN function is set by a <return>, READ and READLN perform a GET before
loading the file's window variable requiring that a READ or READLN is required on
an INTERACTIVE file before testing EOF or EOLN, and RESET does not load the
file's window variable. '

If a file is untyped, all I/O to that file must use the BLOCKREAD and BLOCKWRITE
intrinsics.

RESET and REWRITE generally behave the same as Standard intrinsics, but they both
can take an optional second parameter that is a diskette file name. This parameter
makes the Pascal file equivalent to the physical diskette file.

The intrinsic SEEK does random access on files. The intrinsic CLOSE controls the
closing of a diskette file. UNITREAD, UNITWRITE, and other UNIT intrinsics are
for direct control of peripheral devices. IORESULT returns the status of an I/O
operation.

WRITE and WRITELN are incapable of writing Booleans or record variables. STRINGs
and PACKED ARRAYs OF CHAR can be output in a single WRITE.

The following -are the UCSD intrinsics that handle devices and files.

function BLOCKREAD (fileid:{untypedjfile; buffer:packed array
of char; blocks [,relblock]:integer):
integer '

function BLOCKWRITE (fileid:{untyped}file; buffer:packed array
of char; blocks [,relblock]:integer):
integer

-procedure CLOSE (fileid:{any sort of}file; <,option>)
{ <option> is LOCK, NORMAL, PULRGE, or
CRUNCH. })
function IORESULT: integer
procedure SEEK (fileid:{structured}file; recnum:integer)
function UNITBUSY (unitnumber:integer): Boolean

PASCAL COMPILER
Page 176

APPENDICES

procedure UNITCLEAR (unitnumber:integer)

procedure UNITREAD (unitnumber:integer; buffer:packed array of char; length
[,[blocknumber] [,optionlkinteger)

procedure UNITWAIT (unitnumber:integer)

procedure UNITWRITE {unitnumber:integer; buffer:packed array of char; length
[,fblocknumber] {,option]kinteger)

8.5.3 Memory Management

A SEGMENT PROCEDURE behaves the same as any other procedure but is
diskette-resident and present in main memory only when it is being executed.

A UNIT is a separately compiled collection of.procedures and data str.uctures. The
following is an outline of a UNIT. :

UNIT <unitname?;

INTERFACE
{deciarations and procedure headings appear here. }
{these and only these can be used by the host. }

IMPLEMENTATION
{declarations and procedure code appear here.|
Ithis portion is private to the UNIT.}

BEGIN
{initialization code.}
Ak g _
{termination code.}

END

PASCAL COMPILER
Page 177

APPENDICES

The initialization code is executed before any host program code. The host program
invokes a unit by code such as the following.

PROGRAM <program _name> ;
USES <unitname> <,more_unitnames ... >;

The Standard intrinsics NEW and DISPOSE are implemented.
The following UCSD intrinsics are available for memory management.

procedure MARK (var heapptr:“integer)

function MEMAVAIL: integer

procedure MEMLOCK (seglist:string)

procedure MEMSWAP (seglist:string}

procedure RELEASE (var heapptr:“integer)

function VARAVAIL (seglist:string): integer

procedure VARDISPOSE (pointer:"{any type}; count:integer)

procedure VARNEW (pointer:"{any type}; count:integer)
8.5.4 Concurrency
A PROCESS is declared in the same way as a procedure, and can be STARTed any
number of times by the main program. Processes can be controlled by semaphores.
The UCSD predeclared type SEMAPHORE is the subrange O through 32,767. The
UCSD predeclared type PROCESSID is used only by the System.
The following program outline shows the use of a PROCESS.

PROCESS ZIP;

BEGIN ... END;

process DINNER (var SPLIT, BLACKEYED: peas);
begin ... end;

PASCAL COMPILER
Page 178

APPENDICES

The following UCSD intrinsics are for the control of processes.
procedure ATTACH (sem:semaphore; vector:integer)
procedure SEMINIT (var sem:semaphore; sem _count:integer)
procedure SIGNAL (var sem:semaphore)
procedure START (<process call>; [,id:processid;]
[,stacksize:sinteger;]
~[,priority:byterangel]).
| <process call> is {a normal procedure
call} type byterange: 0..255 }
procedure WAIT (var sem:semaphore)
8.5.5 Miscellaneous
The following syntax exists in UCSD Pascal and not in Standard Pascal.

CASE statements fall through if no label matches the selector.

Comments can be enclosed by either o Jr or n(* ®¥: the two different types can
be nested {only one comment deep). -

"=" and "<>" can be used for extended arréy or record comparisons.
GOTOs are restricted to labels within the same biock.

.F’rocedure EXIT (procid: <procedure identifier>) is used to immediately stop a
procedure.

A length attribute defines a LONG INTEGER. For example, the following defines
LLONG as a variable with up to eight digits.

var LONG: integer[8];
Procedure STR (value: integer[n]; destination: string) converts an integer into a

string. It is usually used for the output of long integers. The length attribute is
optional.

PASCAL COMPILER
Page 179

APPENDICES

PACK and UNPACK are not.-implemented. Packing and unpacking are done

automatically. A PACKED ARRAY OF CHAR can be assigned, input, and output

as a single entity, as with a STRING. -
Packed variables cannot be used as call-by-reference (var) parameters.
Sets of subranges of integers must include only positive integers.
Set comparisons must be between sets of the same underlying type.
The arctangent function can be called either ATAN or ARCTAN.

The following UCSD intrinsics are for the handliné of large arrays.

procedure FILLCHAR (destination:packed array of char;
length:integer; character:char)

procedure MOVELEFT (source,destination {any sort of} array;
length:integer)

procedure MOVERIGHT (source,destination {any sort of} arrays;
length:integer)

function SCAN'(length:integer; <partial expressiond>;
source:packed array of char): integer
| <partial expression> is ='<char>' or
<>'<char>'. }

function SIZEOF ({any variable or type identifier}): integer

The following are miscellaneous UCSD intrinsics.
procedure GOTOXY (x,y:integer)
procedure HALT

function PWROFTEN (exponent:integer): real

procedure TIME (var hiword,loword:integer)

PASCAL COMPILER
Page 180

APPENDICES

8.5.6 Writing a Transportable Program

The following are a few hints and suggestions for writing a program that can be used
in different versions of Pascal.

e Avoid the abilities of UCSD Pascal detailed above.

e Untagged case variant records often cause trouble. The value of the case tag
is either checked by the run-time system or not at all.

e Assume nothing about variable allocation. The size of variables, packing
algorithms, and representations of real numbers and Booleans ali vary from
system to system.

Make sure variables are unique in the first 8 characters.

e Do not assume that all of an expression will be evaluated. Some compilers try
to optimize around subexpressions.

. PASCAL COMPILER
Page 181

APPENDICES

8.6 SUMMARY OF DIFFERENCES BETWEEN SYSTEM VERSIONS

The UCSD p-System has gone through a number of versions since its first release.
The names it has borne are: [.3, 1.4, 1.5, IL.0, II.1, I11.0, and IV.0. Most changes to
the System have expanded its capabilities. The single-user microprocessar
environment, portable code, and hierarchical cperating system are features of the
design which have not changed. Increasing the capabilities has led to a proliferation
and diversification of features. This trend has been countered by efforts for
standardization and portable code. The latest release, 1V.0, was designed to
incorporate the capabilities of 11.0, I1.1, and II1.0, while cleaning up some rough
edges of the user interface, UCSD Pascal code, and System internals.

IV.0 offers upward compatability at the source code level, introduces multitasking to
interpreter-based implementations of UCSD Pascal, and provides more flexible and
cleaner memory-management techniques than previous versions.

Before new changes are explained in detail, here is a bit of history.

After a series of releases internal to UCSD and its computer science program, [.3
was made available to the general public. It was a very simple and very stable
version of the System. Although a screen-criented editor had existed for some time,
1.3's System editor was YALOE (Yet Another Line Oriented Editor).

[.4 was the first version tc be available on other microprocessors. .4 also
introduced the full Screen QOriented Editor.

1.5 introduced separate compilation and agsembly. External routines and UNITs could
be bound into host programs with the Linker. Still more microprocessors were
supported.

[1.0 was essentially a more stable version of 1.5, It was released by UCSD shortly
before SofTech Microsystems assumed responsibility for Pascal licensing and support.

IT.1 has the INTRINSIC UNIT feature and a number of minor differences.
111.0 runs on a hardware-emulated processor, thus requiring many changes, mostly
internal. At the level of Pascal object code, I111.0 introduced concurrent procedures

called processes.

IV.0 is new and pulls together the user-level features of the last three versions.

PASCAL COMPILER
Page 182

APPENDICES

8.6.1 Version IV.0

The following describe some things which you must keep in mind when translating
programs written in earlier versions of UCSD Pascal to release 1V.0.

1. Media--The logical format of diskette directories and diskette files has not
changed; therefore, no conversion of text or data is required.

2. Source Code--Pascal source from versions I1.0, I1.1, and I11.0 will compile under
IV.0. Most programs will then run. Those that will not are programs
~dependent on former implementations of the System's data structures and
memory management, or possibly dependent on the memory requirements of a
given machine.

3. Object Code--0Old programs must be recompiled.

4, Pascal--Has been extended with the PROCESS construct for concurrency.
SEPARATE UNITS and INTRINSIC UNITS no longer exist, although they will
-still be compiled as regular UNITs. UNITs need not be bound in by the Linker
and therefore can be shared. The IMPLEMENTATION part of a UNIT can
contain SEGMENT PROCEDUREs. A program can refer to up to 256 -
compilation units, and a compilation unit can refer to up to 256 segments and
can contain up to 16 segments.

5. The Editors--The Screen Oriented Editor remains much the same; X(change is
‘more flexible, and a K(olumn command has been added.

6. The Assemblers--No macro parameters are allowed within ASCII strings, the
radix switch characters have changed, alphabetic alternatives to some special
characters are provided, and relocatable procedures have been added. Old
assembly language procedures which use type STRING and old assembly language
FUNCTIONSs require some changes to run under IV.O.

1. Memory Management--5EGMENT routines can be declared, as in earlier
versions. A compilation module {program or UNIT) can contain up to 16
segments. The bodies of all segment routines must be declared before the
‘bodies of any non-segment routines are declared. The Standard Pascal intrinsics
NEW and DISPOSE are now implemented. UCSD intrinsics MEMLOCK,
MEMSWAPR, VARAVAIL, VARNEW, and VARDISPQOSE have been added.

PASCAL COMPILER
Page 1853

APPENDICES

B.

10.

- 11,

12,

External Compilation--There is now only one type of UNIT. INTRINSIC and
SEPARATE UNITs which exist in old programs will be compiled into regular 1V.0
UNITs. A IV.0 UNIT is like an old II.1 INTRINSIC UNIT in that it need not be
linked and can be shared, but is unlike an INTRINSIC UNIT in that it -does not
have a fixed segment number. UNITs can now contain SEGMENT routines
which must be declared in their IMPLEMENTATION part. '

Concurrency--As in version I11.0, you can declare a PROCESS which is declared
like a procedure but is started by the UCSD intrinsic START. Once a process is
STARTed, it appears to run simultaneously with the host program and (possibly)
other processes until it is complete. The predeclared type SEMAPHORE has
been introduced to aid in process synchronization. SEMAPHORESs can be .
manipulated with the intrinsics SIGNAL and WAIT.

Internals--The codes have been slightly modified, and run time memory
management has changed. Rather than being placed on the Stack, procedure
code now resides in a "code pool" which resides between the Stack and the
Heap, and is relocatable. The code pool is a highly flexible structure, and
allows. for much run time swapping. In addition, the following UCSD intrinsics
have been created to aid in system-level memory management: MEMLOCK,
MEMSWAP, VARAVAIL, VARNEW, and VARDISPOSE..

Disk Swapping~-5ince code is swapped more frequentty in V.0, a number of
prompts have been added which request that you insert a needed volume.

Incompatibilities--The following practices, which run under 11.0, I1.1, or IIL.G,
require modification before a program can run under version IV.0.

System Data Structure Dependencies--Many System data structures have
changed. Therefore, programs which directly access such things as SYSCOM,
SiBs, etc. will have to be modified.

Heap Storage Utilization--A program cannot assume that the memory
immediately following that obtained by a NEW is unoccupied and available.

Similarly, consecutive calls to NEW do not necessarily yield a contiguous area of
memory. The practice of indexing across the boundary separating storage
obtained by consecutive calls to NEW will fail under version IV.0.

PASCAL COMPILER
Page 184

APPENDICES

Calls to MARK and RELEASE must be paired correctly. The pointer value
obtained by calling MARK must not be modified prior to calling RELEASE.
Furthermore, the pointer obtained from MARK cannot be used as a base pointer
for storage references.

Tightly Fitting Programs--IV.0 in general uses more memory at run time than
previous versions, so programs that have been tailored to fit in main memory
will possibly need to be tailored again. The improved memory management in
IV.0 should make this an easier task than it has been in the past.

PASCAL COMPILER
Page 185

APPENDICES

8.7 CONVERTING PROGRAMS FOR USE UNDER 1V.0

This section discusses how to go about converting programs written in another version
of Pascal to this Pascal, and how to convert assembly language programs so that they
can use this version of Pascal.

8.7.1 Converting Pascal Programs

This section describes changes that must be made to Pascal programs in order to run
them on the IV.0 System. Some of the changes are concerned with interfaces to the
System; others affect version 1I and I1I programming practices.

8.7.1.1 Use (and Misuse) of the Heap

Version 1V.0 is the first version of the UCSD p-System to implement a true Heap as
defined in Standard Pascal. For this reason, most of the programming tricks
assdciated with the rudimentary Heap implementations of past versions no longer
work.

Cansecutive calls to the Standard procedure NEW no longer guarantee the allocation
of a contiguous area of memory. Therefore, creating variable-sized buffers using a
sequence of NEWs does not work. The UCSD intrinsics VARNEW and VARDISPOSE
should now be used to allocate variable-sized buffers. The versien IV.0 Heap is as
sensitive to range violations as the stack has always been, so use it with
corresponding care.

The Standard procedures MARK and RELEASE must be used only for the purposes for
which they were devised. Using a MARKed pointer as a pointer to Heap data does
not work in version IV.0. The contents of a MARKed pointer must not be altered in
any way until the matehing call to RELEASE has been performed. RELEASEs must
only be performed on variables that have been previously MARKed (and not yet
RELEASEd). -

8.7.1.2 Code Segment Management

With the code pool scheme, code segments need to be loaded from diskette much
more frequently (and less predictably) than in the past. Several System segments
may require loading during the course of a single System call, so the System diskette
must be on-line to complete the call. This can affect the usefulness of programs
which manipulate the diskette volumes, such as the Filer.

PASCAL COMPILER
Page 186

APPENDICES

Two solutions address this problem. A program can use the memory management

procedure MEMLOCK to lock into the code pool all code segments required for its
execution. The procedure MEMSWARP can later be used to unlock these segments.
Note that segments should not be left locked if they do not need to be, as locked

segments use much space and can slow the Operating System.

The other solution is more direct, but possibly less efficient. . If direct control of
code residency is undesirable, the System prompts you to place the proper diskette in
a drive so the required code segment can be.loaded.

8.7.1.3 Compiler Directives

The F (byte-flipping), G (no gotos), and S (segment swapping) compiler directives have
no effect in version 1V.0 and can be removed. Goto restrictions were a carry-over |
from the university and are no longer needed. User-controlled segment swapping is
no longer necessary because the Compiler now handles swapping automatically. -

Leaving these directives in your source code causes no harm at present. However, it
is possible that in the future these letters will acquire new meanings as compiler
directives, so the most prudent course is to remove them from yaur programs..

8.7,1.4 Compiling System-Level Programs
Examples pertaining to the following discussion appear at the end of this section.

The outermost (Operating System) lexical level common to versions II and III no
longer exists. The compile-time program directive U- sets the options R- and I- and
allows units to be compiled with reserved System names. See the section below for
details on version IV.0 units. However, these changes do not affect the lexical level
of programs or units. These changes have the following effects on existing
System-level programs. :

The outermost dummy lexical level is invalid and must be removed. Because there is

no distinction between a System and a user program, the segment procedure
declaration for the System program in question must be replaced with a normal
program declaration. The dummy parameters associated with the segment
declaration are no longer necessary. Also, the dummy body at the end of existing
System programs which corresponds to the old System lexical level must be remaved.

PASCAL COMPILER
Page 187

APPENDICES

Dummy segment procedure declarations are unnecessary and can be removed, because
version 1V.0 segment numbers are not System-wide resources. The scope of these
declarations only extends to the enciosing program or unit. Failure to remove the
dummy declarations does not affect the execution of a program, but causes an
unnecessary increase in the size of its code file.

The version IV.0 System globals reside in the interface section of the Operating
System's KERNEL unit. System-level programs which include the file

GLOBALS.TEXT must now use the UNIT KERNEL.—Becausethe version—of-thekerpel—————

unit contained in the standard SYSTEM.PASCAL does not contain an interface .
section, a separate code file containing the unit with its interface section is supplied.

The System-level variables and data type declarations in the kernel unit are almost
identical to those of the older System globals. The only objects missing in version
1V.0 are the variable DEBUGINFO in the System variabies and the BUGSTATE and
SEGTABLE fields in SYSCOM. All other variables and data types have the same
identifier names.

Programs which use modified versions of GLOBALS.TEXT to access a subset of the
old System globals can do so in version IV.0 by moving their own gicbal deciarations
into a stubbed version of the kernel unit's interface section. This is done by
declaring a kernel unit containing the appropriate declarations in its interface section
and using it in the manner described below. This dummy Kkernel unit must be
compiled with the U- option, and the unit name must be KERNEL. Care should be
taken to ensure that the subset declarations correspond with the version IV.0 System
-globals.

Programs which require direct, as opposed to compiler-generated, accesses to
Operating System procedures must explicitly use the Operating System unit containing
the needed routines. This is done in a manner similar to the use of the kernel unit
described below. A description of the Operating System unit names, interfaces, and
file names can be found in the Internal Architecture Guide.

Programs which refer to the System globals to gain access to the screen control
characters and data that reside in SYSCOM work correctly in version IV.G6. However,
the data within SYSCOM is currently also contained in the screen control unit,
described in the UCSD p-System Utilities manual. The screen control unit will
replace SYSCOM in the near future, so it is desirable to make the extra effort now
to move user and System programs away from SYSCOM dependencies.

PASCAL COMPILER
Page 188

The following are examples of system level programs.

Beforel

{$u-} .

program System_level;
{$1 GLOBALS.TEXT}
segment procedure II_style(duml,dum2:integer);

segment procedure durmmy2;
begin
end;

segment procedure dunmy?;
begin
end;

segment procedure mysegment;
begin

end;

begin {II_style.}
mysegment ;

end;

begin {dummy outerblock.}
end.

Afterl

PASCAL COMPILER
Page 189

APPENDICES

APPENDICES

In this example, KERNEL.CODE is the file containing the kernel unit's interface
section.

program IV.0 _style;
uses {$U KERNEL.CODE} kernel;

segment procedure mysegment;
begin

end;

begin {IV.0 style.}
mysegment ;

end.

Before?

{ $U-

program System_level;

type myuserinforec = record
stub: integer;

end;

var filler: array 0..6 of integer;
userinfo: myuserinforec;

segment procedure II_style(duml,dumZ:integer);

segment procedure dummies2to9;
begin
end;

segment procedure mysegment;
begin

end;

PASCAL COMPILER
Page 190

begin {II_ﬁtyle.}

- 0w

mysegment ;

LN

end;

begin {dunmy outerblock.}

end.

After?

{$U-}
program IV.0_style_1;

stub:

uses

*» e

unit kernel {dummy};

interface

type myuserinforec = record
integer

end; :

var filler: array 0..6 of integer;

userinfo: myuserinforec;
implementation

end;

kernel

-segment procedure mysegment;
begin

end;

begin {IV.O_gtyle_}.}

mysegment;

end.

PASCAL COMPILER

Page 191

APPENDICES

APPENDICES

8.7.1.5 Architectural Ramifications

The physical in-memory relationship between parameters and declared variables has
changed in version IV.0. Therefore programs which depend on the old architecture
must be changed. The following is an example (courtesy of the version II Filer) of
this problem.

procedure GetAddr (var MyVar: MyType);
var TrickArray 0..0 of integer;
AddressOfActualParameter: MyType;

begin
{$R-}
AddressOfActualParameter := TrickArray -1
{$R+}

end;

This procedure could obtain the memory -address of a variable of type MyType by
making the assumption that local variables are allocated in memory immediately
following the procedure's parameters. This assumption is true in version II but false
in version IV.0. Programs containing usages of this type need to be madified.

8.7.1.6 Dummy Segment Procedures and the System Librarian

In versions Il and III you can create and maintain programs that are too large to be
compiled at one time (due to memory constraints) by compiling each segment of the -
program separately. The tools used for this task are the LIBRARY utility, described
in the UCSD p-System Utilities manual, and a collection of programs, each of which
contains only the necessary variable declarations; a single segment procedure, and
sufficient dummy segment procedure declarations to assign the correct segment
number to the real code segment.

The situation described in the preceding paragraph does not apply in release IV.0
because the compiler now performs dynamic assignment of local segment numbers to
a program. (Standard and System procedure calls get local segment numbers.) Now
the replacement of a code segment by. a dummy body may cause a different segment
number to be assigned to the target segment procedure. There exists no simple
method for determining the local segment number assigned to most segment
procedures in a program containing multiple segment procedures, explicitly used units,
and implicitly used Operating System units. '

PASCAL COMPILER -
Page 122

APPENDICES

Therefore, using the LIBRARY utility to combine the separately compiled segment
procedures does not produce executable code files. Version IV.0 presents an elegant
solution to programs which have required this treatment in the past: modularize the
program by splitting it into a colliection of separately compilable version IV.0 units.

8.7.1.7 Compiling Units
Version IV.0 accepts the syntax for regular, separate, and intrinsic units as input, but
maps them all into a single unit scheme. The Operating System unit names are

reserved for System use only. The Compiler only allows the:compilation of units
with reserved names when the U- Compiler option is used.

Reserved Unit Names

COMPUNIT - CONCURRENCY

DEBUGGER EXTRAHEAP
EXTRAIO - " FILEOPS
GOTOXY HEAPQOPS
KERNEL LONGOPS
OSUTIL : PASCALIOC
REALOPS SCREENOPS
SOFTOPS STRINGOPS

Version IV.0 units must contain an interface and an implementation section even if
one is empty. Intrinsic data units from version I1.1 may require the insertion of the
reserved word "implementation" before the "end" in order to compile successfully.

8.7.1.9 Program Headings

Contrary to past versions of the UCSD Pascal Compiler, program or unit headings (for
example, Program stuff; or Unit stuff;) are mandatory. The Compiler gives an error
message for programs lacking a heading.

8.7.1.10 Standard Real-Valued Functions

Version IV.0 does not require the statement "USES TRANSCENDENTALS;" when a
program uses Standard real-valued functions such as SIN-and COS. = If this statement
is ‘present, it must be removed before you compile the programs. '

‘PASCAL COMPILER
~Page 193

‘APPENDICES

8.7.2 Converting Assembly Language Programs

This section: describes changes that must be made to assembly language programs in
order to run them on the IV.0 System. - Some of the changes are concerned with
interfaces to the System; others affect version II and III programming practices.

8.7.2.1 Macro Parameters and ASCII1 Strings

Uniike in previous assemblers, macro parameters are not expanded within ASCII.
strings in the version IV.0 Assembler. ' :

8.7.2.2 Assembler Identifiers

Two changes have occurred to assembly language identifiers in version 1V.0. First,
lower-case alphabetic characters are allowed in identifiers and, as in Pascal, they are
internally mapped into their upper-case equivalents. Second, the underscore
character " " is no longer significant in identifiers; this too is consistent with Pascal
usage. :

The following are examples of equivalent assembly language identifiers:

read]oaop
Read_Loop
READLOOP

8.7.2.3 Pascal/Assembly Language Procedure Interface

Byte-array variables (types STRING and PACKED ARRAY OF CHAR) passed as value-
parameters are handled differently in version IV.0. A two-word string descriptor is
passed in place of the old one word pointer. - Processing byte-array variables wiil
require some extra assembly code. '

The order and number of parameter words pushed on the stack prior to an assembly
procedure/function call is different for version IV.0. The function return words are
now below all parameters on the stack, rather than being on the top of stack.
Assembly procedures have zero words of function return space on the stack,
real-valued functions have four words of return space, and all other functions have
one word of return space. As in previous versions, these words must be popped from
the stack by the assembly routine before the function return value is pushed.

PASCAL COMPILER
Page. 194

APPENDICES

The TI1-99/4 and TI-99/4A have two code pool areas. The main code pool is in VDP -
RAM and is memory mapped. The alternate code pool is in CPU RAM and is
directly addressable. This is a problem if an assembly language routine is passed a
string constant because it is difficult to determine which code pool to access to find
the string. The solution is to have a dummy Pascal procedure or function, with the
same parameters, call the assembly language procedure or function. This ensures
that the parameters are in CPUJ RAM.

8.7.2.4 Assembly Level Stack Manipulation

Assembly routines which allocate memory above the hardware stack pointer for data
space may require changes. In version IV.0, the code pool can be as close as 40
words to the hardware top of stack. Because assembly routines cannot determine the
code pool's location, the routines must use the stack sparingly in order to prevent
later System crashes.

8.7.2.5 Radix Switch Characters

The Assembler uses the same characters to indicate the radix of a number. Thus,
source code for some versions may require changes. The two most significant
changes are that binary integer constants are defined with the radix switch character
"T" and octal integer constants are defined with the radix switch character "Q".

PASCAL COMPILER
Page 195

B.8 RESERVED WORDS

The following are the words reserved for use by Standard Pascal and UCSD Pascal, as
well as predeclared identifiers and UCSD predeclared identifiers. -

8.8.1 - Standard Pascal Reserved Waords

and array begin case
const div do : - downto
else end set then

to type until i " var
while with

8.8.2 UCSD Pascal Reserved Words

external file for forward

function goto if - implementation
in interface label mod

nil not of . or

packed procedure process program

record repeat ‘segment

8.8.3 Standard Predeclared ldentifiers

abs arctan atan Boolean
char chr cos eof
eoln exp false get
input integer in - maxint
new odd ord output
Lpack] page pred put
read readln real reset
rewrite round sin sqr

- sqgrt succ text true
trunc [unpack] write writeln

PASCAL COMPILER
Page 196

8.8.4 UCSD Predeclared ldentifiers

attach
concat
fillchar
interactive
mark
rmoveleft
pwroften
semaphore
start
unitbusy
unitwait
varnew

blockread
copy
gotoxy
ioresult
memavail
moveright
reiease
seminit
str
unitelear
unitwrite
wait

PASCAL COMPILER

blackwrite
delete
halt
keyboard
memlock
pos

secan
signal
string
unitread
varavail

Page 197

APPENDICES

close

exit

insert
length
memswap
processid
seek
sizeof

time
unitstatus

. vardispose

APPENDICES

8.9 ASSEMBLER SYNTAX ERRORS
The faollowing are the syntax errors which may be issued by the Assembler.

l: Undefined label

2: Operand out of range

3: Must have procedure name

bz Number of parameters expected

s Extra garbage on line

6: Input line over 80 characters

7: Not enough ifs

8: Must be declared in ASECT before use
9: Identifier previously declared

10: Improper format

11: EQU expected

12: Must EQU before use if not to a label
13: Macro identifier expected

14:- Word addressed machine

15: Backward ORG not allowed

16: ldentifier expected

17: Constant expected

18: Invalid structure

19: Extra special symbol

20; Branch too far ,

2l: Variable not PC relative

22: 1lllegal macro parameter index
23: Not enough macro parameters
24: Operand not absolute

25: Illegal use of special symbols
26: Ill-formed expression

27: Not enough operands

28: Cannot handie this relative
29: Constant overflow

PASCAL COMPILER
Page 198

APPENDICES

30: Illegal decimal constant

31: 1lllegal octal constant

32: Illegal binary constant

33: Invalid key word

343 Unexpected end of input--after macro

35: Include files must not be nested

36: Unexpected end of input

37: Bad place for an inelude file

38: Only labels & comments may occupy column one
39: Expected local label

40: Local label stack overflow

41: String constant must be on 1 line

42: String constant exceeds 80 characters
43: 1Illegal use of macro parameter

44:; No local labels in ASECT

45: Expected key word

46; String expected

47: Bad block, parity error (CRC)

48: Bad unit number

49: Bad mode, illegal operation

50: Undefined hardware error

51: Lost unit, no longer on-line

52: |Lost file, no longer in directory

53: Bad title, illegal file name

54; No room, insufficient space

55: No unit, no such volume on-line

56: No file, no such file on volume

57: Duplicate file

58: Not closed, attempt to open an open file
59: Not open, attempt to access a closed file

60: Bad format, error in reading real or integer
61: Nested macro definitions not allowed

62: '=' or '<>! expected

63: May not EQU to undefined labels

64: Must declare .ABSOLUTE before first ,PROC

'PASCAL COMPILER
Page 199

APPENDICES

76:
17:
78:
79:

80:
81:
82:
83:

Illegal imnmediate operand
Index must be WR
Close paren ")" expected

Indirect and autoiner must be WR

Autoincr must be WR indirect

Comma "," expected
No operand allowed
[llegal map file

. PASCAL COMPILER

Page 200

APPENDICES

8.10 AMERICAN STANDARD CODE FOR INFORMATION INTERCHANGE

(AsCID

The following table gives the decimal, octal, and hexadecimal codes for the ASCII

characters.

0oo
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

bt
O NV 0~ Oy B W=D

-
p—

MM RN N N NN NN NN B O b e b e
= O @R WM O N~ 0N P

00
01
gz
a3
04
05
a6
Q7
o8
09
0A
08
0C

oD

0E
OF
10
11
12
13
14
15
lé
17
18
19
1A
1B
1C
1D
1E
F

SGH
STX
ETX
EOT
ENG
ACK
BEL

ETB
CAN

SUB
ESC
FS
GS
RS
us

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

40
041
042
043
044
045
046
047
058
51
052
053

054

055
056
057
060
061
062
063
064
065
066
Q67
070
071
072
a73
a74
a75
076
077

20 SP 64 100 40 @
21 .1 65 101 41 A
22 " 66 102 42 B
23 # 67 103 43 C
24 % 68 104 44 D
25 % 69 105 45 E
26 & 70 106 46 F
27 ! 71 107 47 G
28 (72 110 48 H
29) 73 111 49 1
2A * 74 112 4A 3
2B + 75 113 4B K
2C , 76 114 4c L
2D - 77 115 4D M
2E . 78 116 4E N
2F [79 117 4F Q
30 O 80 120 50 P
31 1 81 121 51 @
32 2 82 122 52 R
33 3 83 123 53 S
34 4 84 124 54 T
35 5 85 125 55 U
36 6 86 126 56 V
37 7 87 127 57 W
38 8 88 130 58 X
39 9 89 131 59 VY
3A 3 90 132 5A Z
3B 91 133 5B [
3iC < 92 134 5C \
3D = 93 135 5D]
3E > 94 136 5£ *
3F 7

95 137 5F

PASCAL COMPILER
Page 201

26
97
98
99
100
101
102
103
104

105

106
107
108
1409
110
111
112
113
114
115
116
117
118
119
1z0
121
122
123

124

125
126
127

140
141
142
1453
144
145
146
147
150
151
152
153
154
155
156
157
160
161
l62
163
leé4
165
l66
le7
170
171
172
173
174
175
176
177

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
72
73
74
75
76
77
78
79
7A
78
C
7D
7E
7F

J0O = 0 o0 O ow

e vm —~ N % X £ <€ £ v ® 59 00T 0 T 3 — K — =

DEL

APPENDICES

8.11 MUSICAL TONE FREQUENCIES

The following table gives the frequencies (rounded to integers) of four octaves of the
tempered scale (one-half step between notes). While this list does not represent the
entire fange of tones that the computer can produce, it can be helpful in
programming music.

FREQUENCY NOTE FREQUENCY NOTE
110 Y - 440 A fabgve middie C)
117 - A',B 466 A¥ B
123 B - 494 B
131 C (low C 523 C (high C
#(ow,) #(igh)
139 c’, b 554 c’, b
147 D, | 587 D,
156 of, gP 622 b, E
165 £ 659 E
175 F 698 7
185 F*, gP 740 e
196 G | 784 G
208 at, AP 831 c¥, AP
220 A (below middle C) 880 A (above high C)
220 A#(below middie C) 880 : A#(abobve high C)
233 A gP - 932 A¥ B
247 B ‘ 988 B
262 C (middle C) 1047 C .
277 cf, pP 1109 ct, pb
294 D 1175 D
311 of, gP _ 1245 ot P
330 E 1319 E
349 F 1397 F
370 et gP 1480 e P
392 G. 1568 G,
415 a¥, AP 1661 c¥, AP
A

440 o A (above middle C) 1760

PASCAL COMPILER
Page 202

8.12 COLOR CODES

COLOR
Transparent
Black

Medium Green
Light Green
Dark Blue
Light Blue
Dark Red
Cyan

CODE "COLOR
Medium Red
Light Red
Dark Yellow
Light Yellow
Dark Green
Magenta
Gray

White

-~ O BN O

PASCAL COMPILER
Page 203

APPENDICES

CODE

10
11
12
13
14

15

APPENDICES

8.13 HIGH-RESOLUTION COLOR COMBINATIONS

The following eolor combinations produce the sharpest, clearest character resolution.

b
- .
W] N W N~

1,4
1,3

1, 11
12, 15
5, 14
5, 15

1, 15
6, 8
13, 14
2, 10
8, 14
8, 11
15, 6

BEST

Black on Cyan 1, 12
Black on Dark Red 1, 14
Black on Light Blue 1, 13
Black on Medium Green 1,8
Dark Blue on Cyan 4, 14
Dark Blue on Light Blue 4, 3
Dark Blue on Magenta 4, 15
Dark Green on Cyan 12, 10
Dark Green on Gray 12, 3
Dark Green on Light Yellow 12, 2
Dark Red on Gray 6, 9
Dark Red on Light Yellow 13, 9

Medium Green on Light Yellow 2, 15
SECOND BEST
Black on Dark Blue 1, 10
Black on Light Green 1,9
Black on Light Yellow 12, 9
Dark Green on White 6, 15
Light Blue on Gray 5, 3
Light Blue on White 3, 15
THIRD BEST
Black on White 4, 11
Dark Red on Medium Red 3, 11
Magenta on Gray _ _ 13, 15
Medium Green on Dark Yellow = 2, 14
Medium Red on Gray 8, 9
Medium Red on Light Yellow 8, 15

White on Dark Red

Black on Dark Green

Black on Gray

Black on Magenta

Black on Medium Red

Dark Blue on Gray

Dark Blue on Light Green
Dark Blue on White

Dark Green on Dark Yellow
Dark Green on Light Green
Dark Green on Medium Green
Dark Red on Light Red
Magenta on Light Red
Medium Green on White

Black on Dark Yellow
Black on Light Red

Dark Green on Light Red
Dark Red on White

Light Blue on Light Green
Light Green on White

Dark Blue on Light Yellow
Light Green on Light Yeilow
Magenta on White

Medium Green on Gray
Medium Red on Light Red
Medium Red on White

PASCAL COMPILER
Page 204

o
= b

14, 15

9, 15
8, 3

FOURTH BEST

Cyan on Black 7, 15
Dark Red on Black 6, 3
Gray on White 51
Light Green on Black 9,1
Light Red on White 13, 11
Medium Red on Light Green 15, 5

PASCAL COMPILER
Page 205

APPENDICES

Cyan on White

Dark Red on Light Green
Light Blue on Black
Light Red on Black
Magenta on Light Yellow
White on Light Blue '

- APPENDICES

8.14 MATHEMATICAL FUNCTIONS

The following mathematical functions can be determined as shown. PI is equal to
3.14159265... . The sign of a number is returned by the following function.

function SGN(x:real):integer;
begin
if x>0 then SGN:=1
else if x<0 then SGN:=-1

else SGN:=0;
ends

Function Formuila
Tangent SIN(X)/COS(X)}
Secant 1/COs(X)
Cosecant 1/SIN(X)
Cotangent COS(X)/SIN(X)
Inverse Sine ATANCX/SQR(1-X*X)) if X1
Inverse Cosine -ATAN(X/SQR(1-X*¥X)+P1/2 if X1
Inverse Secant ATANSAR(X*X-1))+(SGN(X)-1)*P1/2
Inverse Cosecant ATAN(1/SQR(X*X-1)+(SGN(X)-1)*P1/2
Inverse Cotangent PI/2-ATAN(X) or =PI/2+ATAN(-X) if X<>1
Hyberbolic Sine (EXP(X)-EXP(-X))/2
Hyberbolic Caosine (EXPX)+EXP(-X)/2
Hyperbolic Tangent =2*EXP(-X)/(EXP(X)+E XP(-X))+1
Hyperbolic Secant 2/(EXPOO+EXP(-X)
Hyperbolic Cosecant 2/(EXP(X)-EXP(-X})
Hyperbolic Cotangent 2XEXP-X)/(EXP(X)-EXP(-X))+1
Inverse Hyperbotic Sine LN(X+5QR(X*X+1))
Inverse Hyperbolic Cosine LN(X+SQR(X*X-1))
Inverse Hyperbolic Tangent LINCL+X)/(1-X)/2
Inverse Hyperbolic Secant LN{1+SQR1-X*X)/X) if X<>0
Inverse Hyperbolic Cosecant LN((SGNCX*SQR(X*X+1)+1)/X) if X<>0
Inverse Hyperbolic Cotangent LN({(X+1)/(X-1))/2

For example, the function to find the secant can be written as follows.

function sec(x:real):real;
begin

sec := 1/cos(x);
end;

PASCAL COMPILER
Page 206

8.15 LIST OF SPEECH WORDS

The following is a list of all the letters, numbers, words, and phrases that can be
accessed with SAY and GET SPEECH.

1
5
9

A (ay)
AGAIN
AND
AS

B
BETWEEN
BOTTOM
BYE

C

CHECK
COME
COMPLETE
CONSOLE

D

DID
DOES
DOWN

E
ELEVEN
ENTER

F'

FIND
FIRST
FORTY
FROM

(NEGATIVE)

+ (POSITIVE)
2
6

Al {(uh)
ALL
ANSWER
ASSUME

BACK
BLACK
BUT -

CAN
CHOICE -
COMES

COMPLETED

CORRECT

DATA .
DIFFERENT
DOING
DRAW

EACH
ELSE
ERROR

FIFTEEN
FINE
FIT
FOUR
FRONT

. (POINT)
3
7

ABOUT
AM
ANY
AT

BASE
BLUE
BUY

CASSETTE
CLEAR
COMMA
COMPUTER
COURSE

DECIDE

DISKETTE

DONE
DRAWING

EIGHT

END
EXACTLY

FIFTY
FINISH
FIVE
FOURTEEN

PASCAL COMPILER
- Page 207

APPENDICES

=g

AFTER
AN
ARE

BE
BOTH
BY

CENTER
COLOR
COMMAND
CONNECTED-
CYAN

DEVICE
DO :
DOUBLE

EIGHTY
ENDS
EYE

FIGURE
FINISHED
FOR
FOURTH

. APPENDICES

GIVE
GOING
GOT

HAS.
HELLO
HIT
HURRY

INCH
15

LAST
LET
LOAD
LOWER

M
ME
MESSAGES
MORE

N
NEGATIVE
NINETY
NUMBER

8}
ON
ORDER

GAMES
GIVES
GOOD
GRAY

HAD
HAVE
HELP
HOME

I WIN
INCHES
IT

JOYSTICK
KEY

LARGE
LEARN
LIKE
LONG

MADE
MEAN
MIDDLE
MOST

NAME.
NEXT
NO

OF
ONE
OTHER

GET
GO

GOOD WORK

GREEN

HAND
HEAD
HERE
HOW

IF

INSTRUCTION

JUST

KEYBOARD

LARGER
LEFT
LIKES
LOOK

MAGENTA
MEMORY
MIGHT
MOVE

NEAR
NICE TRY
NOT

ONLY
ouT

 PASCAL COMPILER

Page 208

GETTING
GOES
GOODBYE
GUESS

HANDHELD UNIT
HEAR

HIGHER
HUNDRED

IN
INSTRUCTIONS

KNOW

LARGEST
LESS
LINE
LOOKS

MAKE
MESSAGE
MODULE

MUST

NEED
NINE
NOW

Ok
OR
OVER

P
PERIOD
POINT
PRINT
PROGRAM

Q

R

READY TO START
REMEMBER
ROUND

S

SAYS

SEES
SHAPE
SHORTER
51X
SMALLEST
SPACE
START
SUPPQSED

T
TEN

THAT IS INCORRECT

THEIR
THEY
THIRD
THREE
TO

TOP
TWELVE

U
UNTIL

PART -
PLAY
POSITION
PRINTER
PUT

RANDOMLY
RECORDER
RETURN

SAID
SCREEN

SET

SHAPES
SHOULD
SIXTY

SO

SPACES

STEP
SUPPOSED TO

TAKE

PARTNER
PLAYS
POSITIVE
PROBLEM
PUTTING

READ (read)
RED
REWIND

SAVE
SECOND
SEVEN
SHIFT
SIDE
SMALL
SOME
SPELL
STOP
SURE

TEEN

TEXAS INSTRUMENTS

THAT IS RIGHT
THEN

THING
THIRTEEN
THREW -
TOGETHER ; -
TRY

TWENTY

UHOH
uUP

VARY

WAIT

THE (thee)
THERE
THINGS
THIRTY
THROUGH
TONE

TRY AGAIN
TWQ

UNDER
UPPER

VERY

WANT

- PASCAL .COMPILER
..Page. 209

“APPENDICES

PARTS
PLEASE
PRESS
PROBLEMS

READ1 (red)
REFER
RIGHT

SAY

SEE
SEVENTY
SHORT
SIDES
SMALLER
SORRY
SQUARE
SUM

TELL

THAN THAT
THEL (thuh)
THESE
THINK

THIS

TIME

TOO

TURN

TYPE

UNDERSTAND
USE

WANTS

- APPENDICES

WAY
WELL
WHEN
WHO

WON
WORKING

x.

Y
YOu

WE
WERE
WHERE
WHY
WORD
WRITE

YELLOW
YOU WIN

ZERO

PASCAL COMPILER

WEIGH
WHAT
WHICH
WILL
WORDS

YES
YOUR

Page 210

WEIGHT
WHAT WAS THAT -
WHITE '
WITH

WORK

YET

APPENDICES

8.16 PROGRAM DEVELOPMENT WITH MULTI-DRIVE SYSTEMS

Section 1 describes the use of the Pascal Compiler with a single-drive system. With
a single drive, the Compiler diskette must be on-line during the entire process, which
limits the size of the programs which you may compile. The following describe using
the System with two or three drives.

B.16.1 Two-Drive System

Two disk drives allow you much more flexibility than a single-drive system. To
efficiently use two drives, place the Compiler and Editor programs on one diskette,
and place that diskette in #5. Place the diskette that contains the Filer in #4. The
source and object code that you create should be kept on the diskette in #4. This
allows you to develop quite large programs, with the software needed always on line.

Once the development is complete, the source and object code files can be copied to
an applications diskette and deleted from the diskette which contains the Filer.

8.16.2 Three-Drive System

Three drives provide the most convenient and flexible development system. The
Compiler and Editor should be placed on one diskette and placed in #5. The Filer
diskette should be placed in #4. The source and object code of the program you are
developing can then be put on the diskette in #9. -

PASCAL COMPILER
Page 211

SECTION 9: IN CASE OF DIFFICULTY

1. Be sure that the diskette you are using is the correct one. Use the L(dir (list
directory) command in the Filer to check for the correct diskette or program. -

2. Ensure that your Memory Expansion unit, P-Code peripheral, and Disk System are
praperly connected and turned on. Be certain that you have turned on all peripheral
devices and have inserted the appropriate diskette before you turn on the computer.

3. If your program does not appear to be working correctly, end the session and
remove the diskette from the disk drive. Reinsert the diskette, and follow the
"Set-Up Instructions" carefully. If the program still does not appear to be working
properly, remove the diskette from the disk drive, turn the computer and all
peripherals off, wait 10 seconds, and turn them on again in the order described above.
Then load the program again. .

4. 1If you are having difficulty in operating your computer or are receiving error
messages, refer to the "Maintenance and Service Information" and "Error Messages"
appendices in your User's Reference Guide or UCSD p-Sysiem P-Code manual for
additional help.

5. If you continue to have difficulty with your Texas Instruments computer or the
UCSD p-System Pascal Compiler package, please contact -the. dealer from whom you
purchased the unit or program for service directions.

PASCAL COMPILER
Page 212

THREE-MONTH LIMITED WARRANTY
HOME COMPUTER SOFTWARE MEDIA

Texas Instruments Incorporated extends this consumer warranty only to the original
consumer purchaser.

WARRANTY COVERAGE

This warranty covers the case components of the software package. The components
include all cassette tapes, diskettes, plastics, containers, and all other hardware
contained in this software package ("the Hardware"). This limited warranty does not
extend to the programs contained in the software media and in the aceompanying
book materials ("the Programs").

The Hardware is warranted against malfunction due to defective materials or
construction. THIS WARRANTY 1S VOID IF THE HARDWARE HAS BEEN
DAMAGED BY ACCIDENT, UNREASONABLE USE, NEGLECT, IMPROPER
SERVICE, OR OTHER CAUSES NOT ARISING OUT OF DEFECTS IN
MATERIAL OR WORKMANSHIP.

WARRANTY DURATION

The Hardware is warranted for a period of three months from the date of original
purchase by the censumer.

WARRANTY DISCLAIMERS

ANY IMPLIED WARRANTIES ARISING OUT OF THIS SALE, INCLUDING
BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ARE
LIMITED IN DURATION TO THE ABOVE THREE-MONTH PERIOD. TEXAS
INSTRUMENTS SHALL NOT BE LIABLE FOR LOSS OF USE OF THE
PRODUCT OR OTHER INCIDENTAL OR CONSEQUENTIAL COSTS,
EXPENSES, OR DAMAGES INCURRED BY THE CONSUMER OR ANY OTHER
USER.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you in
those states.

PASCAL COMPILER
Page 213

LEGAL REMEDIES

This warranty gives you specific legal rights, and you may also have other rights that
vary from state to state.

PERFORMANCE BY TI UNDER WARRANTY

During the three-month warranty period, defective Hardware will be replaced when it
is returned postage prepaid to a Texas Instruments Service Facility listed below. The
replacement Hardware will be warranted for a period of three months from the date
of replacement. TI strongly recormmends that you insure the Hardware for value
prior to mailing.

TEXAS INSTRUMENTS CONSUMER SERVICE FACILITIES

U. S. Residents:. Canadian Residents only:

Texas Instruments Serviee Facility Geophysical Services Incorporated

P. O. Box 2500 41 Shelley Road

Lubbock, Texas 79408 Richmond Hill, Ontario, Canada L4C5G4

Consumers in California and Oregon may contact the following Texas Instruments
offices for additional assistance or information.

Texas Instruments Consumer Service Texas Instruments Consumer Service

- 6700 Southwest 105th 831 South Douglas Street
Kristin Square, Suite 110 El Segundo, California 90245
Beaverton, Oregon %7005 (213) 973-1803

(503) 643-6758

PASCAL COMPILER
Page 214

IMPORTANT NOTICE OF DISCLAIMER REGARDING THE PROGRAMS

The following should be read and understood before purchasing and/or using the
software media.

TI does not warrant the Programs will be free from error or will meet the specific
requirements of the consumer. The consumer assumes complete responsibility for any
decisions made or actions taken based on information obtained using the Programs.
Any statements made concerning the utility of the Programs are not to be construed
as express or implied warranties.

TEXAS INSTRUMENTS MAKES NO WARRANTY, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE,
REGARDING THE PROGRAMS AND MAKES ALL PROGRAMS AVAILABLE
SOLELY ON AN "AS IS" BASIS.

IN NO EVENT SHALL TEXAS INSTRUMENTS BE LIABLE TO ANYONE FOR
SPECIAL, COLLATERAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES IN
CONNECTION WITH OR ARISING OUT OF THE PURCHASE OR USE OF THE
PROGRAMS AND THE SOLE AND EXCLUSIVE LIABILITY OF TEXAS
INSTRUMENTS, REGARDLESS OF THE FORM OF ACTION, SHALL NOT
EXCEED THE PURCHASE PRICE OF THE SOFTWARE MEDIA. MOREOVER,
- TEXAS INSTRUMENTS SHALL NOT BE LIABLE FOR ANY CLAIM OF ANY
KIND WHATSOEVER BY ANY OTHER PARTY AGAINST THE USER OF THE
PROGRAMS.

Some states do not allow the exclusion or limitation of implied warranties or
consequential damages, so the above limitations or exclusions may not apply to you in
those states. ' :

PASCAL COMPILER
Page 215

A
Appendices
Arctan

Arithmetic operations

Arrays
Arrays, packed
ASCII codes

Assembler syntax errors

Assembly language
Atan
Attach

B

B option
Beep
Blockread
Blockwrite
Break

C

C option
Call_snd

Case statements
Chain
Chain_snd
Character sets
Chn_snd_chain
Chr_default
Close

Color codes

Color combinations

Commandio.code
Comments
Comments
Comparisons

Compilation, conditional
Compilation, separate
Compiler directives

Compiler use

INDEX

Compile-time options
166 Concat
180 Conecurrency
4a Concurrent processes
26 Conditional compilation
41 - Converting assembly
201 language
198 Converting programs
194 to IV.0
180 Copy
48

D

D option-
159 Del snd list
129 Del_sprite
49 Delete
50 Device numbers
127 Differences between

158

53

178

33, 109
164

194

186
>4

-160

132
149
55
169

UCSD and Standard 175

Differences between

159 UCSD versions
135 - Difficulty '
35,179 ' Directives

51 Dispose

137

122 E

138 E option

117 End snd -

52 . Eof

122, 203 Eoln

204 Error codes

163 Errors, I/0O

179 Errors, execution
35 Errors, syntax
36, 40, 179 - Example, string
164 Exception

95 Exclusion, mutual
187 Execution errors
156 Exit statements

External routines

PASCAL COMPILER
Page 216

182
212
187
31

160
140

21

21

62

168

167

170, 198
19

56

113

167

36

32

INDEX

F J
Files 22 Joy 124
Files in records : Jump_snd 137
and arrays 26 '
Files without a type 24 K
Files, interactjve 22 : ' Keys, special 15
Files, random access 25 Kill_all_snd : 141
Fillchar - 57 ; Kill_snd _ i41
Functions, mathematical 206
Functions, ‘ L : &
transcendental 46, 193 L option. _ 161
: . Length 63
G : ' Library 108, 192
Get 23 Linking 93, 107
Get pattern 121 ' Long integers _ 39
Get_speech i54 .
Get_sprite 153 - M _
Gosub_snd 136 _ Make_snd_list 131
Goto 36, 179 Mark 31, 64
Gotioxy 58 Mathematical functions 206
: Memavail g .65
HO Memlock 66
Halt 59 : Memory allocation 31
Hardware needs 9 . Memory limitations 46
Headings 45, 193 Memory management 94, 177
Heap use : 186 Memswap 67
Moveleft 68
I Moveright 69
I option 160 Multi-drive systems 211
1/0O errors 168 . Musical tone frequencies 202 .
I/O intrinsics 21, 175 : Mutual exelusion - 113
Identifiers 194 -
Insert 60 . N ‘
Integers, long 39 ' New 31
Interactive files 22 : Numbers, device 169
Internal Architecture - : Numbers, random 125
Guide 11
Ioresult 6l

PASCAL COMPILER
Page 217

INDEX

P

P option
Packed arrays
Packed records

+ Packed variables

Page

Parametric procedures
and functions

Past_sprite_coinc

Periodic_noise

Play_all snd

Play_snd

Pos

Priority

Procedures and functions

Processes

Processes, concurrent

Processid

Program conversion

Program development

Program headings

Programming tactics

Put

Pwroften

Q
Q option

R

R option

Radix switch characters
Random access files
Random numbers
Randomize

Read
Read_snd_chain
Read snd_flag

Read snd_list
Readln

Records

Records, packed

162
41
43
41
30

44
153

134

141

140

70

i1l

47

110

33, 109
111, 11
186 -
211

45

9%

23

71

162

162
195
25

125
125
20, 27
138
142
139
20, 27
26

43

Redirect
Release
Reserved words
Reset
Return_snd
Rewrite

Rnd int
Rnd_real

S

Say

Scan
Sereenops.code
Seek

Segments
Semaphores
Seminit
Separate compilation
Set_chr_color
Set_pattern
Set_rnd
Set_scr_color
Set_screen
Set_snd
Set_snd_flag
Set_snd_tempo
Set_spr_attribute
Set_spr_size
Set_sprite
Set-up Instructions
Sets

Signal

Size limitations
Sizeaof

Snd_beat
Snd_lst_offset
Snd_note -
Snd_tone
Snd_volume
Sound processing
Span

PASCAL COMPILER

Page:218

72
31, 73
196

- 28

137

- 29

126
126

154

74

163

75
31,-93, 98,
33, 112
76

31, 95
122

117

125

124

123

140

142

141

148

149

146

12

45

33, 77
46

78
143
143
132
133
134
129
128

Special keys
Speech

Speech words
Sprite_coinc
Sprites
Stacksize

Start

5tr

String example
String handling
Strings

Support
Synchronization
Syntax errors
System differences

System level program

compilation
System.Syntax

T
T option

Tactics, programming
Texas Instruments units

Time

Transcendental functions

U

{J option

LICSD System
differences

Underscore

Unitbusy

Unitclear

Unitread

Units

Units, Texas
Instruments

Unitstatus

Unitwait

Unitwrite

Upper_case

15

154
207
152
144

111

33, 79
80

19

175
18, 127
117
114
170, 198
182

187
157

163

%2 .
116

81

46, 193

163

182
194
82
83
84
32, 100, 193

116
86
87
88
128

Utility library

A

Varavail
Vardispose
Variables, packed
Varnew

w

Wait
Warranty
White_noise
Write
Write_snd list
Writein

PASCAL COMPILER

Page 219

INDEX

108

89
90
41
91

33, 92
213
133
29
139
29

